
'AD-A13 842 COMPUTER RSSISTED INSTRUCTION FOR THE C' PROWAIUING in
LANOUROE ON THE ZEN..(U) AIR FORCE INST OF TECH

~~~~UMCRSFE RIGHT-PATTERSON RFD OH SCHOOL OF ENGI.. F N DENARO7 DEC 85 AFIT/GCS/NA/BSD-2 F/O 9/2 M



.2I

I-o

L60A 12.0

11111L2 II
1 ,. ,-i"

MICROCOPY RESOLUTION TEST CHART

NV N! 1RF All nr ' AAN[PAPN 10( A

.'+ .

~~.!

. . . . , .* • .+. . .+-. _ :: . ._ . .... .. : . . . . . .:: .. . . . .



1,'z'

2~DTIC

COMPUTER ASSISTED INSTRUCTION FOR THE
"C" PROGRAMMING LANGUAGE ON THE

ZENITH Z-100 MICROCOMPUTER SYSTEM

THESIS

Frank W. DeMarco
Captain, UJSAF

AFIT/GCS/MA/85D-2

Approved foi public teleameI Distribution Uimiled

DEPARTMENT OF THE AIR FORCE2

AIR UNIVERSITY

AIR FORCE INSITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio

- -- .... *~*.*.~*.. 86 2 1 ~ O 9



AFIT/GCS/MA/85

DTI

ELECTE

FEB I 168

COMPUER ASISTD INSRUCTON FR TH

Capain USAFin4.

D -GC/A/5-

Apprved or ubli relase disribuionunliite



AFIT/GCS/MA/85D-2

COMPUTER ASSISTED INSTRUCTION FOR THE -C- PROGRAMMING

LANGUAGE ON THE ZENITH Z-100 MICROCOMPUTER SYSTEM

THESIS 17

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science .1

Frank W. DeMarco, B.S. . -

Captain, USAF

December 1985

Approved for public release; distribution unlimited

. *. . * ** *-**



Pref ace

The purpose of this study was to develop a computer

assisted instruction (CAI) program package for use on the

Zenith Z-100 microcomputer system. The package is designed

to give programming students introductory information on the

Cuprogramming language. This programming package is to be

used in the training programs managed by the Computer Assis-

ted Instruction Plans Branch of the 3300 Technical Training

Wing at Keesler AFB, Mississippi.

I would like to express my sincere thanks to my thesis

advisor, Dr. Henry B. Potoczny, who gave me guidance and

encouragement throughout my thesis effort. Thanks is also

extended to Captain Patricia Lawlis, who as my thesis reader

provided many constructive comments on improving this the- L

sis. Grateful appreciation is also extended to the sponsor

my thesis, the CAI Plans Branch at Keesler AFB, and in

particular, Captain Glen A. Miller and Technical Sergeant

Charles T. Neal, who provided help in the verification and

validation of the programs and course material I developed.

. L Finally, I want to express special gratitude to my wife

Anne and my children Crystal and Bryan. They have forfeited

countless hours of time with me in order that I could com-

plete my graduate work here at AFIT. Their patience, under-

standing, and devoted love gave me the strength I needed to

overcome the many obstacles I encountered. I owe them a

debt that will take a lifetime to repay.



Table of Contents

Page

Preface ............................. *.*..... ......... i

List of Figures ................... **..**.... v

I.~~~~~~~~, In r d c i n . .. . . .. . . .

Statement of Problem........ ......... 1-2
Scope ....................... *............ 1-3

General Approach . .. . . . .. . .. .. .. .. . . ... .. 1-4

Advantages of CAI .. .. . .. .... ... *. . ... .. . . 2-1
Disadvantages of CAI .............. 0....... 2-3
Development Considerations .........0....... 2-4
Course Development Approach ........0....... 2-5

LeIII. Design Specification ..................... 3-1

General Description ............... 0....... 3-1

SAtu Program . .. .. . . . .. .. .. .. .. . .. .. .... 3-2
Statiss Program ... *...................... 3-3

IV. System Implementation ........................ 4-1

General Description ....................... 4-1
"C" Lessons Descriptions .................. 4-1
CAI Program . .. . . . . ... . .. . ... . .. . .. .. . 4-3
Status Program .. .. .. . ... .. . . .. . .. . . . . .. 4-13
Statistics Program ........................ 4-15

V. Conclusions and Recommendations .......... 51

General Comments *********............ 5-1

Suggestions for Further Study .......... 5-1

Appendix A: Users Guide .. .. .. .. . .. .. .. .. . .. .. . .. . . A-1

Using Program "CAIN . ...... ............. A-1
Using Program "Student Status" ............ A-1
Using Program "CAIStatistics". ............ A-2r



.

Page

• *.-- Appendix B, Program Listings ....................... B-1

Program "CAI" ........... ... ........... B-1
Program "STUDENT-STATUS" ............. ON... B-34

Program "CAISTATISTICS" .................. B-41

Appendix Co Files Used by Program "CAI" ............ C-1

File "INTRO" .............................. C-1
File "MENU" .... .................. C-2
Film "LESSON .. ...... . ................. C-3
File "LESSON2 ... ............. C-28
File "LESSON3" ......... .......... C-51
File "LESSON41" ...........-. 5.............. C-72
File "LESSON5". ............................ C-92
File "LESSON6" C............................C-109
File "EXIT" ............................. C-128

Vita ......................... .................. V-1

iv

~ .*. ~ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .



List of Figures

Figure Page 1.
4.1 CAI - Main .................................... 4-5

4.2 CAI Query ................. .... .............. 4-6

4.3 CAI - StartLesson ....................... 4-7

4.4 CAI - ShowTopic ............................... 4-8

4.5 CAI - Tframe .................................. 4-9***4

4.6 CAI Qframe .. . . . . . . . . . . . . . . . . 4-10

4.7 CAI -Mquestion ............................... 4-11 ..

4.8 CAI - Pquestion .............................. 4-12

4.9 Student Status Main ......................... 4-14

4.10 CAI Statistics -Main ......................... 4-16

4.11 CAI Statistics - Display .................... 4-17

4.12 CAI Statistics - ShowStats ................... 4-18

v

I o°

J--.

r o.

V-'.

-.............



AF IT/GCS/MA/8 5D- 2

Abstract

The field known as *computer assisted instructionor,

"CAI* as it is commonly called, has gained considerable

interest and support since the advent of the microcomputer.

K More and more people, including those in supervisory posi-

tions are beginning to see the advantages, both cost and

time, in having training available in the workplace. This

-Stud fdeveloped a training package for use on the Zenith

Z-100 microcomputer. The package consists of six lessons

and three programs. The six lessons cover various topic

*k

P ~ dealing with the IC" programming language. The objective of

these lessons is to present a introduction to the C" pro-

gramming language. The three programs are written in the

Pascal programming language and are used for the following

functions:

1. Provide a means of displaying the lesson material.

2. Provide a means of checking student progress.

3. Provide a means of displaying course statistics. S_

vi

-------------------------------------------------------------------.s

st eveopeda tainig pckag fo useon he Znit



Computer Assisted Instruction
for the

"C" Programming' Language
on the

Zenith Z-100 Microcomputer System 6.

I. Introduction

Background

The use of Computer Assisted Instruction (CAI) to help

in the training needs of the Services has increased with the

I introduction of microcomputer systems into the workplace.

The development of CAI courses for use on these computer

systems has been lagging behind the need for training on

the new systems. The CAI development process involves a

working knowledge of the system to present the material as

well as a knowledge of the subject to be presented. The

,om

(.9 presentation of the developed CAI course is usually control-

led by means of some type of presentation program. Manpower

and time constraints may prohibit development of such a

program and indicate the need to utilize a commercially

developed authoring/presentation system.

The use of a commercial authoring system requires that

a coursewriter learn that specific authoring system for use

on a specific microcomputer system. The coursewriter can

then devote his attention to the development of the course

subject material. The subject topics that typically are

identified as of primary importance include: word process-

inge data base management, spreadsheets, operating systems,

and programming languages. es

1-11
wokn nweg ftesse o rsn h aeila ..-

. -.. o.
devlopd atho...preentt.o. syt.. .. .. ..



Statement of Problem

1 " The problem to be solved is as follows: How can a

computer assisted instruction (CAI) course be written and

implemented to teach the "C" programming language on the

Zenith Z-100 microcomputer system without the use of a

commercial authoring/presentation system? The course will

be of sufficient length to instruct the beginning student to

a level that will allow him/her to program using the "C"

programming language. The course subject will be broken

into lesson topics which are made up of subsections of the

lesson topic.

Each lesson will:

1. Give the student the ability to select between being

shown the complete lesson or only reviewing certain parts. -

2. Have the ability to sample student comprehension

during lesson presentation by means of questions.

3. Have the ability to branch, at appropriate times, to

other parts of the lesson.

4. Give the student a chance to review subsections

before being tested on the lesson material.

5. Have the ability to test the student on the

presented material after lesson completion.

6. Have the ability to allow for review of subsections

before retesting (in the case of lesson failure).

In addition to the above, a record will be kept of

student responses, both during the presentation of the les-

sons and the tests, for later statistical analysis and

1- 2



V. r:.7-.i W. W; I-..- -

display. This is done in order to be able to identify areas

of the course that perhaps are not teaching the material as

intended and/or are causing the student difficulties.

N:N
Scope

The scope of this thesis effort is to design, imple-

ment, test, and validate a CAI course for presenting infor-

mation on the "C" programming language. The design phase

will incorporate top down structured programming techniques.

Although it is not the primary purpose of this thesis,

a method for developing the textual material and presenting

that material will necessarily be created. This added bene-

fit arises from the fact that no commercially available

authoring/presentation software will be used. This opens up

the possibility of developing other courses using programs

written during this thesis effort.

The end result of this thesis is to develop a CAI

course that will be acceptable to the sponsor at Keesler
'.

AFB, who will then distribute the course to all interested

training managers throughout the Services.

Assumptions

It is assumed that the students who will use this CAI

course will have a working knowledge of the operation of the

Zenith Z-100 microcomputer system that this course is

designed to run on. This Z-100 system is the standard

system purchased by government contract through Zenith Data

13

i.--.-. .--- --'. ---'.-2"-'2-..'i'. -.- .- ...-.-.-.-..'. '--....-..-.. - --..-.. ....---. "-.-.-".-." .--." - ..-...' -.i -



4

Systems, namely, the 192K byte, two 5.25 inch disk drive

system. Although it would be of some benefit, there isn't

any requirement that students taking this CAI course have

access to a "C" compiler.

General Approach

The first step in this endeavor is to do research into

the techniques of teaching with a computer. The purpose

here is to broaden the teaching base from which to build the

overall course presentation. Once the methods of presenting

the material are well in hand, the course material will be

researched to establish a firm background from which to

teach. The next step is to write the individual lessons and

develop the program to present them. A program will then be

developed to do the statistical analysis and display.

Following the research and development phase will be

the implementation of the system. This phase will consist

of putting all the pieces into a cohesive package that will

accomplish the goal of the study, namely, use the Zenith

Z-100 computer system to present a CAI course on the "C"

W. programming language.

In order to ensure the development and implementation

of a quality product, an extensive testing and validation

system will be incorporated throughout the study. The ulti-

mate test will come when the sponsor at Keesler AFB tests

the course against their well-established standards.

1 -4

Z _ -* *



' S'

II. Methodology

The Aim of CAI

The overall aim of Computer Assisted Instruction (CAI)

is, naturally, to use a computer system to assist in the

training of individuals in a given subject.

In its most common form, CAI is very similar to a

programmed text. The subject material is presented to the

student, questions are asked of the student, answers are

evaluated, and a decision is made as to what material is

shown next. If the questioning indicates that the student

understands the material, new material is shown. If the

student seems to be having trouble with a particular part of

the lesson, a branch can be made to supplemental material to

help the student understand. Other forms of CAI use simula-

tion and/or emulation techniques. These methods of instruc-

tion are very useful when teaching a specific performance

process but not for such things as computer programming.

Since it is the intent of this thesis effort to teach a

programming language, the method used will closely resemble

that of programmed text.

Advantages of CAI

There are many advantages to CAI, the following are but

a few of the more important ones: Standardization, time

efficiency, availability, flexibility, modularity, and cost

efficiency."

2 -



Each of these advantages contribute to the overall

attractiveness of using CAI as a method of training. Stan-

dardization is accomplished by programming the subject mate-

rial into the computer. In this way, each and every student

who takes a given course will receive the same information.

The unfortunate human flaw of a human teacher forgetting to

mention some important detail is thus avoided.

The use of CAI can save time by allowing students to

progress at their own rate. This is opposed to the alterna-

tive of locking them into a classroom setting and control-

ling the pace of the class as a whole. This leads us to

another of the advantages, that of availability. Since the

CAI course is conducted on a microcomputer system, the

C course is virtually available at all times. This means that

many training requirements can be accomplished without the

student having to leave his/her work area. Hence you have

flexibility (another advantage) in scheduling training.

Since the course is available at all times, training can be

scheduled around work requirements.

The actual construction of a well developed CAI package

should allow for the accessing of information in a rapid

way. This usually calls for the development of sections of

the course in small modules. In this way the student

doesn't necessarily need to complete an entire course to get

at the information that pertains to his/her job require-

ments. The CAI course developed in this thesis follows this

modular course concept. The course in broken into lessons

2-2



* .. °.

which are each broken into topics.

The last advantage mentioned is that of cost effective- .

ness. By taking the previous advantages into consideration

it is easy to see how using CAI can achieve a cost effective

training program. Training can be conducted whenever work-

load requirements allow the student enough free time to take

CAI lessons. The need for the student to travel to some

other location for needed training can also be reduced.

Disadvantages of CAI

There are of course drawbacks to everything, and CAI is

no exception. A few of the disadvantages follow: System

availability, Uni-directional training, acceptability.

The availability of the computer system for training

purposes can restrict the usefulness of the CAI system. The

primary reasons for system nonavailability are: Operational

requirements and maintenance downtime. An organizations

operational requirements may be such that a computer system

can not be spared in order to accomplish a training require-

ment in a timely manner. Obviously, if a computer system is L
down for maintenance, training can not be accomplished using

that system.

The second disadvantage involves the inability of the

students to ask questions of their trainer. This requires

the student to concentrate hard on the presented material in

order to ensure the required understanding. Since the stu-

dent doesn't (usually) have the ability to query the compu-

2 -3

.......... "..*.. .



ter on a point that may be causing him/her problems, the

student must seek out someone who knows the subject in order

to receive clarification. This of course is not all bad,

since this will lead to better communication in the work

place.

Lastly, CAI is not completely accepted by management

personnel as an alternative to classroom instruction. For-

mal classroom instruction has been used for so long that

many believe it to be the only effective means of accom-

plishing required training.

Development Considerations

There are several design considerations to take into

Laccount when coming up with a methodology for CAI course

development. The first of these and perhaps the most impor-

tant is the objective of what is to be taught. As stated

before, the objective of this study is to create a means of

presenting information on the "C" programming language on

the Z-100 microcomputer system. The second consideration is

the resourses available for training. The necessary re-

sources for taking the course developed in this study is any

microcomputer system that runs under the MS-dos operating

system. The primary system will be the Zenith Z-100. The

third consideration is the teaching technique to be used.

As stated earlier, this will most closely resemble a pro-

grammed text presentation. The last major development con-

sideration is course validation. In addition to initial

2-4

S. ..A. .



development validation, the CAI package will provide a means

of recording student progress and provide for statistical

collection of student responses to all questions throughout

the course. These capabilities will be described in detail

later in the study.

Course Development Approach

The general approach to developing this CAI was to

write a program which would keep track of as many as twenty

students as well as present the material to the student in

short topic sessions. The student has total control over "

which topics he/she views. The presentation program is

written in the PASCAL programming language and is easy to -[

modify in the case of any future enhancements. Two addi-

tional programs, both written in PASCAL, have been included .

in the package. The purpose of the first is to produce a -'

report of the current student status for each registered

student on a given student disk. The purpose of the second

is to produce a report of the statistics collected on the

student responses during course presentation. More detailed

information can be found in Chapter 3.

2 5
..- .



,... . . . . . . . . . . . .

III. Design Specification

General Description

The purpose of this computer assisted instruction (CAI)

package is to provide a means of presenting introductory

information on the "C" programming language. The material

to be presented is to be stored in separate lesson files on

one five and one quarter inch floppy disk that has been

formatted using the MS-DOS "format" program. The lesson

files are to be created using any text editor that will run

under MS-DOS. The lessons are to be broken into topic

sections that the student can complete in a relatively short

period of time. Three programs will be provided with the

CAI package and a description of these follows.

CAI Program

The main program contained in the CAI package is the

one that will present the course material to the student.

This program will read and display several files automati-

cally in addition to reading and displaying the student's

chosen subject material. This program will keep a record of

student progress through the course as well as write to a

statistical collection file to be used for future course

validation and improvements.

Lesson Files. The main CAI program will have access to

six lesson files which contain the course material. Each of

these lesson files will contain introductory information for

its particular lesson material. An associated menu is also

3-
. *. •.S p . . . . . . . . ,..-,.

.- - °-~A ~.. ~ ~ A ~ ..



included for display, allowing the student to choose the V.

topic material to be shown.

Other Files. In addition to the lesson files discussed

above, there are five other files to be used by the main CAI

program. First, there is to be a file that contains intro-

ductory comments to the student. This file will be kept

short since it is to be seen each and every time the program

is executed. Second, there is to be a main menu file that

will allow the student to choose which of the six lessons

they want to enter. This file will be restricted to one

screen in size. Third, there is to be a file that contains

program conclusion comments. This file will also be kept

short and is only to serve as a means of assuring the stu-

dent that they have correctly terminated the program.

Fourth, there is to be a file that will store data on as

many as twenty students. This file is where each student's

progress through the course is to be kept and will be keyed

on a unique student identification number. Lastly, there is

to be a file that will store data for each question displayed

during course presentation. This file will be used for on-

going course improvements.

Status Program

The status program will be provided for use by the

training monitor. Its whole purpose is to provide a means

of viewing each student's record in order to determine their

status in the course. A report is to be generated giving r

3-2



771

the unique student identification number and listing all

lessons that have been successfully passed. The program

will allow for the possibility of the training monitor

having merged several student record files into one file.

The program will also format the report for either screen

display or hardcopy printout.

"STUDENT" File. The file to be read by the status pro-

gram is to contain student identification numbers, student

names, as well as lesson and topic status data. An active

student file will contain at most twenty unique student

records. As mentioned earlier, several student files may be

merged into one student file prior to running the status

program.

Statistics Program

A statistics program will be provided for use by the

office of primary responsibility (OPR) at Keesler AFB. This

program is to provide a means of analyzing the data

collected on questions presented during each training

session. A report is to be generated giving information

such as lesson number, frame number, number of responses for

each of the valid responses, number of right responses,

number of wrong responses, percent of right responses, and

percent of wrong responses. The results of the statistical

analysis is to be displayed in either of two formats:

screen display or hardcopy printout.

3 3

.-.... , .,:-V.,-... ,.. ....... ... ... .. .. V .. , .. . .-... .. .. .-.... ... ,... .. V• .. ., .- :. :,... .. , .. .
.. .¢?.-' g .t. -t, J. i4 " -" -. '._,,' ' -*.- --V..<. .-, *,,.* *.;_- *' .. . ' .: < . ." ,' .,., V',' ,2 ,V V . ,,V ._- - - ,''_V. ._'-'.-



OSTATS" File. The file to be read by the statistics

program is to contain such items as lesson number, topic

number, frame number, correct answer, and the student's

response. Again, several of these files may be merged into

one file prior to running the statistical program.

3-4

* . *5 .-..- S.. .

~ . ~* S -~ *** ~~S,.'.-S" S °



IV. System Implementation

General Description

The implementation of this computer assisted instruc- '

tion (CAI) training package involved the development of -

lesson material covering six major subject areas. The de-

velopment of these lessons was accomplished in conjunction

with the development and validation of the three programs

specified in chapter three. This chapter presents a brief

description of each major component of the CAI training

package. Copies of these components are provided in appen-

dixes B and C.

"C" Lessons Descriptions

The following is a breakdown of the subject material as

L. presented in the "C" CAI course:

Lesson One. Lesson one contains introductory informa-

tion on the course and some general information on "C"

programming. The lesson is broken into four subtopics and a

lesson test. The first subtopic gives a short introduction

to the overall course structure and some of the particulars

used in the course. The second subtopic discusses the

overall organization and structure of a typical C program.

The third subtopic gives a description of the overall C
tprogramming environment covering such items as "compiling"

and "linking". The forth subtopic states a problem to be

solved and presents a solution to help introduce the student

to C program statements.

4-1



- . . .77774 -7- - .3. . . .- - -

Lesson Two. Lesson two contains information on varn-

ables, constants, operators, and expressions used in C pro-

gramming. The lesson is broken into four subtopics and a .

lesson test. The first and second subtopics cover the dec-

laration and use of variables and constants. The third and

forth subtopics cover the use of the different operators and

expressions in C programming.

Lesson Three. Lesson three contains information on

program control statements used in C programming. The les-

son is broken into four subtopics and a lesson test. The

first subtopic gives descriptions of the structure and use

of the "if" and "if-else" control statements and how to

"nest" these statements along with a description of the

"switch" control statement. The second subtopic discusses

- the structure and use of loop statements (while, for, and

do-while). The third subtopic gives a description of the

"break" and "continue" statements and how they are used.

The forth subtopic gives a description of the "goto" state-

ment and the use of "labels" within a C program.

Lesson Four. Lesson four contains information on at-

rays, pointers, and address arithmetic used in C programming.

The lesson is broken into four subtopics and a lesson test.

The first subtopic introduces the declaration, initializa-

tion, and use of arrays. The second subtopic introduces the

declaration and use of pointers. The third and forth sub-

topics cover how to work with pointers and includes topics

such as how pointers are passed to functions, how pointers

4 -2

".. .......................... ...... .2 .. . .° . -..... u 5.... ..- ''' - -'2--



are used in conjunction with arrays, and how to use address

arithmetic.

Lesson Five. Lesson five contains information on struc-

tures that are used in C programming. The lesson is broken

into four subtopics and a lesson test. The first subtopic

introduces the idea of structures and two methods of their

declaration. The second subtopic describes the use of struc-

tures within structures and arrays of structures. The third

subtopic describes how to use pointers in conjunction with

structures. The forth subtopic describes how structures are

passed between functions.

Lesson Six. Lesson six contains introductory informa-

tion on input and output capabilities of the C language.

The lesson is broken into four subtopics and a lesson test.

Ic The first subtopic gives a description of the use of the

standard I/O functions "getchar" and "putchar". The second

subtopic gives a description of the use of the standard

input function "getline". The third subtopic gives a de-

scription and examples of the standard input function

"scanf". The forth subtopic gives a description and exam-

ples of the standard output function "printf".

CAI Program

Program CAI is the program that is used to present the

lesson material to the student. The program is designed to

present any lesson material that is in the same format as

the lessons developed in this thesis. Therefore, additional

4 -3

• "• Zoo o" '.. .
" .

..-. . ..'. .'%" '° .- -.-.-. °oo.-'.•'o.'. '% ' o'. '%;. " , . . .- ', . '. ... . % .,' .'° ,." ° . . -



courses may be written for presentation on the Zenith Z-100

by this program. The following is a breakdown and brief

description of the program.

Structure Charts. The program is broken into a main

program and 17 procedures, all of which are written in the

Pascal programming language. Structure charts of this pro-

gram are presented in Figures 4.1 thru 4.8 of this chapter.

Flow Description. The flow of this program follows a

very logical structured path. The program begins by presen-

ting an introductory message from file "INTRO". The student

is next queried for their unique student identification

number. A search is then made of file "STUDENT" (which has

been read into memory) and if no match is found (a new

student) the student is queried for their name and unique

student identification number they wish to use from this

point on. Next, the student is presented a menu of lessons

from which to choose (file "MENU"). Once a selection is

made, introductory information for the chosen lesson is dis-

played and another menu is presented giving the student a

choice of lesson subtopics. Once the student chooses a les-

son subtopic, the topic is read into memory and topic pre-

sentation begins. When the topic is completed, an update of

the CAI statistical collection file as well as the students

progress record file is made. The student is then returned

to the subtopic selection menu, where if the student wishes,
I..

he/she may exit to the lesson selection menu, where if the . "

student wishes, he/she may exit the program.

4- 4

.-. . . . . .. . . . . . . . . . . . . . . .



.'1.

S.

~.. .~,..

* 0 * L:~Y
* OW

0
* S

-J

1..
U

~0
S.
a

U S..I) _________ LI
- .

S S..
(J~ US

-
o -4

- 0

Q I

'-4

0

S
S..

~0
-4
I&.

5W ~
I.
LI
w
S..
U
S

0

L

r

4-5

IS'
..........................................................................................................................................

%



w40

S.
0

90

4) l4



-'pp

('I

uw
S

4)
Uk

£Q

S
-J
.03
S.
0

4)
In

'.4

(.9!

lq.

S
S.

-0
La.

I

~
4-7



ix a_
0a

4n a

4 8 .



1*,1

tok



IEI

101
S 7-7



I.

.
LL

7.tl S



* *..

I.% .*-

'*; .'..-.

V

0
-4

4'

*3
U

a

0
-4 ~-4

.3

S

4-.
0~

*w.
U
S.

w
-4

IL

r

4 - 12

S



Status Program

Program StudentStatus is the program that is used to

present the current student status for all students recorded

in file "STUDENT". The program is designed to accept and

present any number of student records. This provides for

the merging of several student files prior to running the

program. There are two output formats for this program,

"screen" and "hardcopy". The following is a breakdown and

brief description of the program.

Structure Chart. The program is broken into a main

program and five procedures, all of which are written in the

Pascal programming language. A structure chart of this pro-

gram is presented in Figure 4.9 of this chapter.

Flow Description. The flow of this program follows a

strightforward path. The program begins by asking the user

for the preferred method of report format, choices are

either "screen" or "hardcopy". A header is then displayed

and is followed by the student progress information. The

structure of the report is in the format of "student identi-

fication number" followed by the word "passed" for every

lesson that the student has successfully completed.

4 - 13

. . . . . . .. .. .

. . .I .



u 0

W4,

4.1,

U Jr.

L

aTP

ol1

u u

fu ~

14U L



L-. . -V-1 .

Statistics Program r.-
Program CAI Statistics is the program that is used to

present the statistics collected on all questions asked

during all course presentation sessions. The purpose of the

program is to provide a means for the office of primary

responsibility (OPR) at Keesler AFB to verify course content

and effectiveness. The program is designed to accept and

present statistics on as many as 150 different question

frames. This restriction can be overcome by changing one

line of source code (a constant value), if it becomes neces-

sary. Several "STATS" files can be combined (and should be)

before running this program. There are two output formats

for this program, "screen" and "hardcopy". The following is

a breakdown and brief description of the program.

Structure Charts. The program is broken into a main

program and eight procedures, all of which are written in

the Pascal programming language. Structure charts of this

program are presented in Figures 4.10 thru 4.12 of this

chapter.

Flow Description. The flow of this program follows a

strightforward path. The program begins by asking the user

for the preferred method of report format, choices are

either "screen" or "hardcopy". A header is then displayed

and is followed by internal reading and sorting routines.

The output report is displayed in columns, giving all the

needed statistics to the user. Items such as percent right

and percent wrong help to validate questions.

4-15



p.

-4 I-
1)U
U .4

I... . .4

44

* U fj.
p.

(A0.4 -4

0
U
-4

4,
.3
-q

4,
a
4)
U)

0-4
p.

V '4

0
-4

S

S S.5
-4
La.

I

r

4 - 16

. .

* . . . 4 . . . .. * .



- - - - '--. -.. -~- . - - - -. - -a -

II

II
4) -
LA.a

17



pp

.4

LA.

. . . . .. . . . . . . .-



V. Conclusions and Recommendations

General Comments

The computer assisted instruction (CAI) package devel-

oped, tested, and implemented in this thesis effort presents

an introduction to the "C" programming language. Although

it does not get deep into fancy "C" language usage, it does

serve its primary purpose of providing a strong base from

which the student can build his/her "C" programming exper-

tise. With a little initiative, the student will soon have

the full power of the language at their disposal.

As was mentioned in chapter one, the primary goal of

this study was to develop a course on the "C" programming .-

language to be presented on the Zenith Z-100 microcomputer

system. In order to achieve the stated goal a secondary

goal had to be met, that of developing a software presenta-

tion system for the developed course material. This second-

ary goal provides the possibility of producing other courses

for presentation on the Z-100 system.

Suggestions for Further Study

The existing presentation program is a good one as it

stands, but certain enhancements would make it better. One

such enhancement would be to add logic to allow for the

asking of "fill in the blank" type questions. Another would

be to allow the student to backup to a previously seen

frame. One improvement in program control would be to read

in the first frame of a topic, display it, and then read in

5 -1



the rest of the topic while the student is reading the first

frame. Currently, the student must wait nearly one minute

before any topic material is displayed after they have

chosen the topic from the topic menu.

Finally, the overall "C" course can be improved in

several ways. Two of these are: provide for more branching

to supplemental material and cover more of the capabilities

of the "C" programming language. The course material and

the programs used in conjunction with its use can be an ef-

fective means of getting introduced to the wonders of "C"

programming.

4&7

5*2

.°,.

.'..



Appendix A

Users Guide

Using Program "CAI"

Program CAI is the main program of this computer assis- j
ted instruction (CAI) package. The executable program is

stored on "Disk 1" under the filename CAI.EXE. To start

this program running, you need to boot the Zenith Z-100

microcomputer using the MS-DOS operating system. Remove the

operating system disk from drive A, place "Disk 1" in drive

A and "Disk 2" in drive B. Disk 2 contains the six lesson

files of the C CAI course.

Once the disks are in place, type CAI in response to

the A> prompt. The main CAI program will begin to execute

and will prompt you for any further needed responses. One

important item that deserves special mention is the student

identification number that you will be prompted for during

initial startup. This number is used to keep track of an

individual's progress through the course. In order for it

to be an effective feature of the package, the same sequence

of characters must be entered each time you enter the CAI L.

program.

Using Program "STUDENT STATUS"

Program StudentStatus is designed for system training

monitors. It is not for use by the students taking the

course. This program will produce a report giving the

current student status for each student recorded in file

A-I

,.. .. . . . . . .. . . .. ... , -.. .. . . .. . . -. .- .. .. ..- - .- - . ... . .. . .- -_ .. .. .. . .-.



"STUDENT" on "Disk 1". The executable program is stored on

"Disk 1" under the filename STATUS.EXE. To start this pro-

gram running, you need to boot the Zenith Z-100 microcompu-

ter using the MS-DOS operating system. Replace the opera- .

ting system disk in drive A with "Disk 1" of the CAI pack-

age. Once the disk is in place, type STATUS in response to

the A> prompt. The Student Status program will begin to ex-

ecute and will prompt you for any further needed responses.

Using Program "CAI STATISTICS"

Program CAI Statistics is designed for the office of

primary responsibility (OPR) at Keesler AFB. It is not for

use by the students taking the course. This program will

produce a report giving statistics on all the C CAI course

00questions recorded in file "STATS" on "Disk 1". The execu-

table program is stored on "Disk 1" under the filename

VALIDATE.EXE. To start this program running, you need to

boot the Zenith Z-100 microcomputer using the MS-DOS opera-

ting system. Replace the operating system disk in drive A

with "Disk 1" of the CAI package. Once the disk is in

place, type VALIDATE in response to the A> prompt. The 1
CAIStatistics program will begin to execute and will prompt

you for any further needed responses.

A- 2

-. . . . . . . . . . . .o

•. - . ... . . . . . . . . . . . . . . .



A~ppendix Bl

Program Listings

Program "CAI"

" C*ttt THIS PROGRAM WAS WRITTEN IN PARTIAL FULFILLMENT OF A MASTERS THESIS t**t'j

t Date: 8/1/85 .
* ersion: 1.0 -

f Title: Proqram CAI '
. Filename: CAI.F'AS

Coordinator: Capt Frank W. DeMarco *
t Project: Masters Thesis .
* Operating System: MS-DOS .
* Language: Pascal "

Use: Compile and link with PASCAL.LIB using MS-Pascal compiler and linker.*
Contents: Program CAI - Main Driver. .

* Procedure ClearScreen - Clears Z-100 terminal screen. $
* Procedure RegStu - Registers a first time student. *

i * Procedure Query - Reads in "STUDENT" file, prompts student for *
* student identification number, and checks the *
*- , ID number against current student list. .
-. Procedure StartEnd - Reads and displays files "INTRO" at start -
* of program and "EXIT" at end of program. -

06. f Procedure Select - Reads Rnd displays file "MENU", prompts the * L..
* student for choice of lesson to be shown. *
* Procedure ShowTopic - Driver of procedures that display topic -
* material. -

P Procedure BlankLines - Initializes area where topic material is .
* stored to blanks. -
* Procedure Readlines - Reads in topic that the student chose to * L
• * view. , --

*: * Procedure StorePositions - Builds an array of line positions "
" * where frames begin within the topic. *
- * Procedure FrameHeader - Displays a frame header for a frame. *

.* Procedure Tframe - Displays a text type frame. *
t Procedure fframe - Driver for the procedures that display and *
* * handle question type frames. -

Procedure Mquestion - Displays and handles multiple choice type t
*" * question frames. *

" Procedure Pquestion - Displays and handles pick type Question "
* frames (true/false and ves/no). -
SProcedure RecordStats - Reads file "STATS" and adds statistical *

.* * data from current session. .
t Procedure StuFec - Writes updated student course progress data '

* * to file "STUDENT". *
" Procedure StartLesson - Displays topic choices for a lesson, *

prompts student for choice of topic to
be shown. Driver of procedures that -

• .* * display lesson material and update *

-- ~

................................................................ .. yd,. "

• ' o . ,.,, . '. . .. , '._.'.7_, .'.. ,
"_
. . . . .. . ......'. *, . .: .. '. ._ : d . ,, t _n - -'. ,. . = ' t , ,., , , ,.



* statistical & student progress files.

* Function: The purpose of this proqram is to present material on the "C" *

programming language. It is intended for use by the 300 Tech- *
. * nical Training Wing in support of its mission. The office of *

primary responsibility for this course is the CAI Plans Branch *
( 7 700o TCHTW/TTGXZ) at Keesler AFE, MS 9534 "

- Date: .!5 1119
* Version: 1.) "

$ Name: program CAI -

* Module number: 1.0 *
- Description: Main driver of program .

f Passed Variables: None * -

* Returns: None
S Global Variables Used: studentcount, choice .

$ Global Variables Changed: None "

# Files Read: None *

* Files Written: None "

-' * Modules Called: ClearScreen, StartEnd, Query, Select, StartLesson "

- Callino modules: None "

" Author: Capt Frank W. DeMarco .
L 1.0 --an) W. DeMa.rco 8/i1/5- input original code

pr or-z.r C.A! inrjt.o'.tut):

MYxTVtDENTc: 2C:

°" M 4X'TOP T C _ t :""" '

',LESISON =

YTCP'2
ALINEF '! ** *** **** ';

ELANKSA= '..

iofile = TEXT:
rl l record

stUdertnumber : sca ed -rra, [I.. Il] of char:
-tudentname : nac:Led arr.?v [l2 91 cf char;

lessors : c, aced arrv [l. .MAXLESSONS] -f char:
_- a:s: C.. .mLESSONS., I..MAXTOCICS1 of char;

end: _

roster = arrav Ci...MAXTUDENTSJ o rol:.

-> r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..' -. .". ....'. . . . . ..-..i .-..- .? - . .. .• .- -i ".' - '---. '.: . -. -. .- -- - '- --'->



Istat array [l..MAXLESSONS] of char;
displayIn = packed array [l..803 of char;
lessonlines = array [I..500, 1..801 of char-
menulines = array l.1.22, 1..801 of char-,
tstat = array [l..MAXTOPICS] of char;

var
iomessage, student. statfile, menu, lesson, templ, temp2 : iofile:
advance, linecount, studentcount integer;
choice. Ichoice : char;,
npupil roll; ...o
rpupil : roster;
lessonstat : istat;
println displayin;

lessonin lessonlines;
menUln : menulines;
topicstat : tstat;

Date: 8./1185 ii
Version: 1.0

s Name: procedure ClearScreen .
Module number: 2.0 "
Description: Clears Z-100 terminal screen and sets "no-wrap" on EOL. -

* Passed Variables: None
* Returns: None *
* Global Variables Used: None "
$ Global Variables Changed: None t
: Files Read: None "

Files Written: None
I Modules Called: None .

Calling modules: program CAI. StartEnd, Query, Select, RegStu,
*StartLesson., ShowTopic, Gframe., FrameHeader .

Author: Capt Frank W. DeMarco
History: -'

* 1.0 Frank W. DeMarco 8/1/85 - input original code *

procedure ClearScreen;

begin P* Frocedure ClearScreen *"

write (chr(27),'H',chr(27), 'J' chr(27) " w')

* end; P*Frocedure ClearScreen *3

Date: 911/85 .
$ Version: 1.0 

............... . ..............................................



* Name: procedure RegStu
.? . ... Module nutmber: 4. 1$ .

* Description: Registers a first time student. i
$ Passed Variables: None *

Returns: None *
Global Variables Used: npLIpil, stUdentcoLtnt
Global Variables Changed: npupil,. studentcount *

t Files Read: None t
Files Written: None $

Modules Called: ClearScreen -
Calling modules: Query -

A Author: Capt Frank W. DeMarco *
t History:

! * 1.0 Frank W. DeMarco 8/1/85 - input original code $

procedure RegStu;

var

i, j: integer:

beqin { Procedure RegStu *1

for j :I to 1 do
npupi!.studentnumber[j] :-

for i := I to 28 do
noupii.studentname[j] :

for i := 1 to MAXLESSONS do

npupil.lessons[]:
for i := 1 to MAXLESSONS do
begin
for i I to MAXTOPICS do
npupil.topicsi,j]

end:

writeln:
writeln('Since this is your first time into this course, I have a few ");

writeln('administrative matters to take care of.');
writeln:
writeln('Flease enter your first name: '):

write(' (Max. of 10 characters)

while not (eoln) and (i II) do
begin

read (npupil.st-dentname[il):

end:

if (eoln) a'I i 11) then
bepin

for i : i to 10 do
rc!Dil.sttudentname[i] :JI;

- 4

* . .- 7

• ,,v ,], "... ,.-. v ,,- .. .... .... . . -.,.. - "-"-." -- - . -"."-"-" " " ,.• " . , ,' '-> - - -'> - ,," " , ..- ,-"-



readln
end

Z-* else
readi n:

* writein;
writ-eln:

writeln('Please enter your middle initial:')
write (Max. of I character) X!

w~hile not (e-oln) and (i K12) do
begin
read (nPUPi1 .St~tdentname[ i I)

end,
if (nPUPil.StUdentname1ll] in [a.''c'.Z))then

begin
npLtPil.StUdentname~l2)l
readin
end

else
beain
nPUPilI studentname(11 l
npupil.studentname[l12]
readl n

Le end.,

writein.
writein;

writeln('F'lease enter your last name:.-
writetU (Ma' . of 16 characters) >>

*while not (eoln) and (i '29) do
begin
read '(npUpil .stUdentname~i I)
i 3 + I

end.
if (eoln) and (1 29) then

beq3.n
for i i to 28 do

npupil.studentnameli] 'V;
readl n

end
el, =e
readin;

writein;
wri tein;

F4 t



writeln('Now for the most important part.');
.. ... writeln('Please enter your unique, personal student identification number: ");

"'" write('(Ma,. of 11 characters) ' ;

while not (eoln) and (i < 12) do
begin
read (npupil.studentnumberti]);
i :=i + 1
end:

if (eoln) and (i < 12) then
begin
for i :- i to 11 do
npupil.studentnumberCi]

readl n
end _

elsed
readln;

for i : 1 to MAXLESSONS do
begin
npupil.lessonsi]:
for 1 1 to MAXTOPICS do-" ~~npupQil.topiCS~i,j] ='3 .

end;

studentcount := studentcount + 1

end; {* Procedure PegStu *.

Date: ./1/85 "
Version: 1.0 *

Name: procedure Query *
Module number: 4.0 *
Description: Reads in "STUDENT" file, prompts student for student identi- *

fication number, and checks the ID number against current .
student list. "

: Fassed Variables: None *

Returns: None
# Glcbal Variables Used: rpupil, studentcount, npupil -
$ &lobal Yariables Chanoed: rpupil, studentcount, npupil t

Files Read: student "
Files Written: None *
M Modules Called: Cleat Screen, ReqStu *

t Calling modules: program CAI t

Author: Capt Frank W. DeMarc *.
V Hi stor,: -
t 1., Fr-ani W. Dearco 8111/8, input original code *

,4 .

::... .. .. . .. . . . .. . . . .. . . . .. . . .

....... ...... ....... ...... ......- - - - - --..- - - - - - --".-- - ----'- - ----..".-.-----.--.> -.- .----- -."- ---.- --.--.:.' .."" "'--2 .. 2. > '; -." . - ," ." : ''2.2. ' "--- '- -.' -.'.



* procedure Query;

var

iii. j :inteqer-,

* qfound : boclean;

character :char;

begin [* Procedure Query *31

assign (student, 'student'):,
reset (student);
character *

if not (eof(student)) then

read (StUdent~character);

for i 1 to MAXSTUDENTS do
begin
for i I to I11 do

rpupillil.studentnumerj
for 1 ~ 1 to M'28 SON do
roLupillil.sessontnse~j

for ii 1 to MXLESSONS do
begUi1Jlsosj
for i : 1 to MXTOFICNS do

(.~~ rpbe in~ 2t~c~i~
end:i ItoMXTPCSd

end-.

studentcount 0;
while (character ')and not (eof(Stutdert)) do
begin

StudentCOUnt stuldertcOUnt + 1;
while not (eoln(student)) do

beal r
f or j I to 11 do

read (student.,rPLirilE1 ).stuidentnumberEj]):
for i =I to 28 do

read (Stutdent.rP.ulxl ~i .Stutdentnaimeljl);
4 or I~ to MAXLESSONS do

read (student~rPutPilli).lessons[jlP:
f or ii :=I to MAXLESSONS do

begii n
for I = to r1AXTOFICS do
read (studemt~r,- -ilCJ.topics5EijJ)

end:
i+ 1

end;
Iif n ot 'eo4(studentP' then

readIn (Student);

7-U



if not (eof (student)) then
read (StUdent,char-acter):

end,

ClearScreen.

* write('Please enter youtr Student identification niUmber:')
write('(Ma . of 11 characters)....)

1 1
while not (eoln) and (i '12) do
begin

read (nPUpil .StUdentnL~mberi 2);
i : j + 1

end.
if (coin) and (i 12) then
begin
for i :i to 11 do
npupil.studentnumberli) :

end-,
readin;

qfound :false;
while (i (21) do

begin
if (nPupril1. studentnUmber =rpLIpi 1 Ei2. StLdentnUmber) then

begin
qfound := true:
npupil .studentname := rPUPil[i J.studentramez
nDUpI01.lIeson s := rpupil~iJ.lessons;
for ii 1 to MAXLESSONS do

begin
for I to MAXTOPICS do
npupil.topicsii *j] ' rpupilliJ.topics~ii .j]

end:
end;

i : t +
end;

if not (Qfound) and (stUdentcount KMAXSTUDENTS) then
begin

CleakrScreen:
writeln ('NO MATCH FOUND');
ReaiSt u:,
ClearScreen

end

if not fq+ound) and (studentcount MAXSTUDENTS) then
begin
C1 e-erS.reen;
StUdentcount studentcoutnt + 1:
wr44teln(Sorry,. but my class res~ter shows a "Full" class.');

............................................................



Z WK-

writeln('Flease see your training monitor for a new student disk,.');
writeln: ¢ '

writeln('END OF PROGRAM')
end;

close (student)

end- , * Procedure Query *}

Date: 9!1.185 ,.•",

Version: I.(,

Name: procedure StartEnd .
Module number: 3.0 -
Description: Reads and displays files "INTRO" at start of program and ,

* "EXIT" at end of program.
t Passed Variables: code

~etrns- None*
r Global Variables Used: println, linecount. advance -
* Global Variables Chanqed: println, linecount., advance .

Files Read: intro. ex;it
f Files Written: None -
t Modules Called: ClearScreen -

Calling modules: proqram CAI t

Au..thor: Capt Frank W. DeMarcoI~ ~ I~ S Hitor a,
f 1.0 Fran[ W. DeMarco 9/l/85 - input original code -

* rocedure StartEnd(code : char);

I~ Var

character : char:
i integer;

begin Procedure StartEnd ."

case code of

' : assign (iomessage,'intro)
'El assign (iomessagee,'it')

end:

reset (iomessage)-
read (iomessagecharacter);
lirecount : .

reneat

while (ch-racter '#') and not (eof(iomessage)) do
beoin

* for i, := 1 to 50.. do "'

. . . . . . . . . . . . .. . . . . . . . . . . . . . . .



printlnli] :
readln (iomessageprintln).
linecount := linecount + 1;
writeln (println):
if not (eof(iomessage)) then

~read (i omessage, character)
end; .r,-

tif (character = '') then

! ~begin .

advance 2 - linecount;
linecount := 0;
for i := 1 to advance do

writeln;
for i := 1 to 27 do
write (' ');

write ('Press RETURN to continue.'):
readl n;
if not (eof(iomessaoe)) then
begin
readln (iomessaoe):
if not (eof(iomessaqe)) then

read (iomessaae, character)
end;

Cl earScreen
end;,

until (eof(iomessage));

close (iomessage)

end: Procedure StartEnd C -

Date: 9,11/95
'Version: 1.0

* Name: procedure Select .
: Mcdule number: 5.0 ,
SDes-cription: Reads and displays file "MENU", prompts the student for
* choice of lesson to be shown. L
t Passed VAriables: None *SReturns: None "L

-1 :b'Al %'arit les Used: lessonstat, println, choice .
-lbal 21riables Chanoed: lesscnstat, println, choice .

t Files Read: menu *
- Files Written: None *

Modules alled: ClearScreen *"
Celinj modules: procram CAI

"- * * " .

* * +ut -' : tet rr.ln[ W. DeMarco "
H( His tcry:

* 1.' F-an! W. DeMarco 8/1/5 - input original code *r

1 C)

% . . . . . .



procedure Seect;

chVaracter : char;

i, : integer;

* begin f* Procedure Select *3

assign (menu, menu'),,

* for i :=1. to r1AXLESSONS do
lessonstatE:J : npupi1.lessonsfi];

reset (menu);

read (mewu.character

0;.

* while (character in E'''')and not (eof (menut)) do
beqin 4

readin (menU,printlr);

if (character ')then
bec gr!
wr 1te V'')
for 1 2 to 78 do

(q write fprintln~iljk
writein (println[79 )

end
else

beqin

write (*)

for i :=2to 8Bdo
write (printin~iP);

wri1t e (I essonst at 1 1.
for i := 10 tc 78 do

write (printin[14P;
writein eprintlnC79])
e nd:

n~ ot .--c)f(mrn ther
-ead nenU, Charqcter)

end:

* ~write '.'ENTF THE NUMER OF1 YOURF CHOICLE OP "X" TO EXIT THE CAI P~ROGRAM: '

* if F,!-) -2 in 1 1 k IYESO --V'XJ hen
Cl~ ~ Ea~'e S-: *

Cl I r



beqin >.
- ,% ClearScr een:,%.

writeln ('Sorry, ',choice,' is not a valid response. Please try again.7 )

end, L

until (choice in ['1'..VLESSON,'x','X') :.
if (choice in ['I'..VLESSON]) then

writeln ('You have chosen lesson number :,choice,'. Thank' yO.')
el se

writeln ('OK, I will now return you to the operating system.')

close (menu)

end: P Frocedure Select U'

• *. Date: 8/1/95 " -
Version: 1. *

t. Name: procedure ShowTopic .
Module number: 6.1 *
Description: Driver of procedures that display topic material.
Passed Variables: None t

t Returns: None .
f G lobal Variables Used: lessonln, npupil, topicstat *

G lobal Variables Changed: npupil, topicstat
0* Files Read: None .

t Files Written: None t
:* Modules Called: ClearScreen, BlankLines, ReadLines, StorePositions,

* * Tframe, Oframe
* Calling modules: StartLesson

SAuthor: Capt Frank W. DeMarco r

t Historv: "
I .e Frank W. DeMarco 8/1/95 - input oriqinal code

pro'edure ShowTopic;

c onst "
MINSCOPE 70.O.

* tyDe
position record

framenum : integer: L
I'.alue : integer.

end"
topictitle = packed arra.' [1. .701 of char"

var

1pla, ce arr'r 11. .51:] o+ position:

... . . . . . . . . . . .

. . . . ...to.icti le. . . .. '.. .

•3 1.°

=..% -,-PI



i, . k, istart., neftframe, frame integer;
numasked, numrioht, score : real:
sfound, test : boolean; r.

ftype : char:

* Date: /1/85
t Version: 1. 0 .* *

t Name: procedure BlankLines * .
Module number: 6.1.1 "
Description: Initializes area where topic material is stored to blanks. "

* Pa-sed Variables: None *
t Returns: None *

Slobal Variables Used- lessonln, tname, "place--
Global Variables Changed: lessonin, tname. iplace *

t Files Read: None *
t Files Written: None
t Mod ls Called: None *

Calling modules: ShowTopic *

t Author: Capt Frank W. DeMarco I
History:*

1.0 rank W. DeMarco 8 /!/9 5 - input oriainal code ,

procedure =_ Er4LI nes:

var Inde;i, inde>:i  : inteqer;

ber! { r ro dLre E I n.n L Fe s

fr .nde-i := 1 tco 500 do
be-, n
for ,nde.: to 80 do

lessonln[Inrdei , indexi I
end;

fo~r inde:i :=1 to TO do '7Z

tnameEindeli :' C.

for ;tn dei 1 t- -0 do51

lplace[inde i].iramenum := :
J:1;celi-de i.value := 0-; "

end:

- °o.

ert: [* r ,edure Plani Lines- *;'

. - -. •- . ,



* * Name: procedure ReadLines
9 ModUl e number: 6. 1. 2
* Description: Reads in topic that the student chose to view.*

t Passed Variables: None*
* * Returns: None*

t Global Variables Used: lessonin, ichoice, tname
* Global Variables Changed: lessonin.. tname*
* Files Read: lesson*
* Files Written: None* _

* Modules Called: None
* Callinq modules: ShowTopic*

A uthor: Capt Frank.. W. DeMar-co
t Hi storf,:*

* * ~1.0 Frank W. DeMarco 3//5-input original code

rcc-edure ReadLines;

var
* rfouFnd t oolean;

iva vlue integer;

b g r, P*~rocedure ReadLines *3

* wr-lteln:
wri jtel r, ('One momert Please...'7);

-fcund :=false.,

re-eat
r e t essor, Iessorn 11,1J);

-' Iesonn ,1J, Ichcice) thenL.
rfoun +-.-,-Ie

r e=aln lssor)le:so

~Te Z, -~elS1ss r- d



while (lessonln~i,1J Ichoice) and not Ceof (lesson)) do *-

while not (eoln(lesson)) do

begin
read (lesson.lessonln~i.i)):

end;,

readin (lesson);
i + 1.,

if not (sof (lessor)) then
read (lesson, iessonlni,39); A

1 + 1 a-.

end;,

ivaplue := 1:L
fo ivalue :~16 to 4"; do
be L,

tnam=,,re11iva11Ue) I lessonl n II Jv-alue)I:

ivalE -- vlu e + 1
end:

end: ft Procedure PPesdLi nes *I

* 4. flamne: procedure StorePositions*
* 4 Module number: 6.17
* * Descraptionm: Builds an array of line positions where frames begin within t.

the topic.*
* * Piased lVariables: None*

4 eturns: None*
G lobal Variables Used: lessonli. i. i, k. lplace. lchoice*

* Global Var-iables- Changed: i , lk place*
F 11le s RPea-.d : NIo n e

* * ~-:1esiWritten: None *-
* 4 Modules Galled: None*

* Callin.q modules: ShowTopic*

: t-tho-: aPrank W. DeMarco*
Hi storv:*

I .P Frank W. !DeMarrn- R/1.'95 -input oriainal code*

r-, Pt ew l'F 94 -ertEIC~r.:

bEc n f* Procedure StorePositions C' r



repeat
i f Qlescsonl n Ii3  '1' then

becqin
+=~ 41

fnumber 0
for 2val :9 to 11 do

f numhb er (10 .* f number) + ((ord (IessonIn~i C jval ) - ord C))
lplacelkl.framenun +number;

1 1+1 eI vEk1L

else
i +.1

until (lessoonln~i.1) I> choice);

k ~ + 1A~ This rn=-rf::s the end *1
lplace[I.l.framenum -1: { of the array *1

end,. P r-ocedure StorePositions *1

* Ver s .on: 1 .0

: N.Eme: :)-ccedure FrameHeader
* Module rumter: .*

# Descri-,tion: Di~ oa frame header- for a frame.*
t P=a sed Vari._ables: None

* * F~eturns: None
* ,.Dbal V r ia bles Used: None

G ~cbal Variables Chanqei: None*
V Files Peaid: Mone

* * i les- Wlr-tter: Nonie
* * Modules r Ied Ce sr S. z r e n

.11 Caqlmn c rncdules: Tf rame, Muetior, questicin

CE* 2*cC

0 4ior: -Ci7 it4 DerarW., or'1alinco -7r

c~cd'ie ~~rnHeadmr

*be:Ir _,-~ F~rCpdet,~

s1 n

...................................... '-r.'-- *



I -V --T Z

%

writeln '4Lesson #'.choice,' 4Topic #'.lchoice,' *Title: 'qtnamfe,p
*Frame: ',frame:T ,' 4)

* wr teln (ALINEP1.ALINEP2)

end, C Procedure FrameHeader C,

Date: 8/l'854U
* esin 1.

t N.ame: procedure Tframe*
* MoTdule number: 6.1.4*

Decription: Displa-ys a text type {raime.*:i

* assed 'ariables: istart
Returns: None*

* Global Variables Used: advance, linecount. lessonln., nex:tframe*
* Global Vzariables Ch.anoed: advance! lineCOUnt. nextframe4
* Files FRead: None*

Files Written: Nore*A
4 Modules Craled: FrameHeader

* 4 Callinc modules: ShowTopic*

t fluthor: Capt Frank: N.. DeMarco*
Hito:*

4 1. 0 Frank W. DeMarco 9'1/85 -input original code4

4, pror_-dWre T rame xst art : Mntscer)

t ec (4 Procedure T+rame C-

whil~e si aeczurd r. -

write '4'
f or -mum r, o 78 do

write rristact, 1 nuLMj)

l:ecourt linecount + 1;

wr itn rgp (AP!JF SPL ANk*SA~
-id.,ins? 27 - (itnecount + 5);

It' -eI



for mum := 1 to (advance -1) do
- -wr it ei1n (A2LflWr8,E'LANKSl)~

writeln (ALINEPlqALINEP2);
for nrmm :- to 27 do r

write "'Rress RETURN to continue.'):
rea din;
linecCUnt := 0;
i# "I esonlnC istart, 23 = 2') then

beqi n
FrameHeader;
writel n (gE'LgNK.SE4 LAMNK'S)

er, di
until (lecsonrllistar+ '1-]

j
4 -'1essoninfistart..2J '' then

if flessonln~istart, .l'1 then,
beqin

for inum 51 to do .

nextframe :(10-. t ne;:tframe) +
f(ord -lesson~n~istart. numl)- ord ('0')

endc
el se

rip-ttfr-me -1:
ed:

* ~end: fP rnCzd~rp Tframe C"- -

* Date: 98'/' *0
* ersion: 1.0*

* *. ame: rrocedure CIfraime*
*t ModLIe n-;umb er: 1. 5*
** Deszri rtion: Driver for th' proredures that iisp1av and handle Question 4

*L4 tvoe f rames.
4 Pa:ssed Va-riables: istart t
4 eturns: None*
* Global Va-riables Used: lesscrnn*

f t Elobal1 VariablEs Thanaed: None*
* Files Fead: None*

* f Filesi Written: None*
* Modul es Call Ied: Cleakr~creen. MQUestion-, PquLE-stiOn*

C CalI,11 mq mo-dules: Show--opic

*P, I. ~kho Clmr~t Fr-'n LW. Delo mo *
* Hist-Or>: t

* * . 7:' F fk W. DeM3orco- 8!11/8 K i.L.or: C34 o oe*-
*~, co******4t*****1****** **d* * e*?I *******t 4 **~

e .112wr e a me 4 3.n. tp c er



vat .->
-, : aty-pe : char; :::

., ivalq : inteqer;

Date- 9!..85.

Version: 1.0 .4

t Name: procedure MQUestion --
Module number: 6.1.5.1

t Description: Displays and handles multiple choice type Luestion frames. :?;
: Passed Variables: istart.-

Pete: 9/1 None

. 71 GobalI Variat Ies Used: Iess on In cest Eh oice, I[ch oic e.. frame., numright, t''.
.nex t frame"

Global .ariables Chanqed: numriqht, netframe

t Files Read: None ston
Files Written: tempi5."

Modules Caled: FrameHeader ight- *

f Callinp modules: Oframe *

t Author: Capt Frank W. DeMarco *

-t . " .Fran i W. DeMarco 8/1/ 5 - input oriqinal code *

S.c-i. t on istart : integer);

e H;

r E. I.n,

mrum : Irn__-cer:

r : ctE, c s-o re. s upt : char;
*mfm~ur d : boclern: ,,

be..in :Frcsedure Mnuesti:n *}

is. t:= ist, rt " ""

wr t n:
wrt ten;

*while (Tercsnrlictarf, I: z ' .o '
begin :.

for nun~h := to 9'0-.-q'_ do

w r i te . .on, nri te.... mutt]
writen:..
il-tart := :ctart--l ",

en. d;:,-'

r-
• .while , =;- ml~ = :r --. U) do, -m '-

19 -" "'; ,



beg in
if (lessonlnlistart,4] 4' then

- -coet lessonlnistart.3),
write C' '.lessonln~istartj.'')
for jnum :=6 to 80 do

write (lessonln~istart..jnuIm):
writeln;
istart istart +- 1

* end,

* repeat
* writein;

write (' Enter 'your choice here
readin (response);
if (response in E''.Eqa.. 'lthen
writein 1

* else
writein C' Sorry. that is not a valid respc-e. Please try again.')-.

until (response in ''.E'a.'J)

* case response of
:response

* 'b'.'B : response ''
:response : C'

ld',D :response D
e7 IE :response 7E

CO-- end,.

writeln (templ.choice~lchoicefra-=me:. -.crrect~resporse),

if (respo~nse correct) then
bepin
if (test) then

numriaht :=nurriaht + 1. 0
grOLIPrUM '4'

end
else

groupnumn.

rfourd f alse;
repeat

if (lessonlrifistart,23 arOL!pnUM) then
rnfcund true

* else
istart istart + 1:,

until Crfound);

if (orournun =4') t -n r* Start C-roup '4' IL:oCI t,
-beclin

wt! Ie elsscl rA iat.. 41 '5' cr (less-nlistarlt] . do
beo i n
for ir-urn do.:2



j. v

writeln;
i start istart + 1I4

ends
if (lessonlnlistart,43 'B') and (lesson~ntistart,51 :' then
begin
ne<tfraine : -
for jnum := to 8 do

nextframe :=(10 *~ nextframe) +
((ord(lessonln~istart~jnum2)) -ord('0'))

end
else

ne~ft.frame -1
end: {~End Group '4' Logi4c U,

I+ (Qroucnum = c)then C* Start Group ''Logic *1
bei Q,

if (lessonlrlistart,T.) = response) and
(lessonlnfistart,41 = ' )then

begin
while (lessonlistart.4) 'B') or

('lessonin~istart. 5) m:' do
begin
for mium :=5 to 80 do
write (lessonlnistart.jnurn)l);

wiriteln;
istart istart + I

end-,
(~. end

else
begin

frifound false; .

repeat
whi le Q essonlnCi start, inUM] and not (MfoMind) do
beqin

if (lessonlni~istart, JnUrn) response) then
mifound :=true;

irn = M. MU m +

end;,
if not (rnfOLind) then

i start i start + 1:

en d
else

be o in
while Ilessorl'4istart, inmJ ' do

nu' = lum +I

uintilI (rfOUnd' or (lessonlrtistEirt.2)
if 'm+----nd) then

beoa r



while (lessonln~istart,4l K 'B') or
- - (essonlnfistart,5]JC '.,') do

- beqin

for inurn = jnLIM to SO do
write (lessonlistart, 5numj);

wri tel n:
~num :=4

istart :=istart + 1
end;

if flessorlriistart,4] 'B') and (lessonlnlistartF- ':' then
beqln d

nenextrame)

((ord(lessonln~istar-t.jnumJl)) -or-d('0'))p end
else

ne-tframe :=-1

el nd
ese
writeln ('SOMETHING 'I' AWRY' LET77S TRY THAT AGAeIN.7)

end;
end:~* Ed ~ru~ 5' Logic *3

*end-,~ Procedure MIquest,.on I~

(.9 te: T'l.'(35
* ~ ~~ Versionf-: .*

t N.~rne: procedure P-,UeStlon*
t Module number: 6.1.t.2

** Descriptio n: Dis-jlays mrnd handles tYPe QUE'Stion frames (true/false
* and'ves/lno).

* Passed VI.ariatles: istart*
P eturns: None
* loal Vmariiables Used: lessr- :hcice, lohoice. fra me.tet urgt *

* ne tfrpme*
Gleobal Yariatbles Chanced: numr:QhIt, ne;<tframe

S Files; Fe-ad: None
* Files Written: teincl

f M OdUless Called: FrameHeader
t Cal mn, modules.: fr Fern

* 4uthor: Cact Fr-nk W. DeMarco
Hi Horv:

** 1.0 Fr::n!j 'A. DetlarCO 8/1.'8F - IMPLIt .origjinal code

*Procedur'e Pa!-!es'onit~rt intzeoer):

srespnses= pa-ed a;rra,' [I-l. of :h~r:



var
jnUtm. indeX intecer;
answer :sresponses;
correct, response, qrOutpnuim char;
pfound,, ptrue :boolean;

begin C* Procedure PQUestion *J*

istart :=istart + 1;
FrameHeader;
writeln;

while (lessonlnlistart. 21 '2') do
begin
for Mum -3to 80 do
write (lessonin~istart. jnurnJ);

wri tel n;
istart i=start- + 1

end-,

writeln;

if Q(lssomln[i start, 21 -')then

beqin
correct lessonlnlistart,.1;-
.jntart istart + 1

end-,

repeat

* write ('Enter your choice here-
*while mc~t (ecin) and (inde;! 6) d o

beci
read (Answertindexl);
index;: index + 1

end;
*if (eoln) and (i K* 6) then

benin
for index index to t do

answer~index]....
readl n:

end
* else

e a d In;
ptrua! false-,

* ~i if AnswerE1J, irn[tC ~ '*'. y.Y.n.N1 then
Ptrue : true

* else
writein ('or.that is not a v,-alid response. Please try -apain.'~

urt~l rtrue



case answer~l] of
* t'.T.y. response ''

'F'.'','N' response 7N
end;

*writeln (templhcoce~lchoice.frame:'-,orrect.response);

j'F (response = correct) then
beciin
if (test) then
numright :=nuoright + 1.0:)

grOUrinum '4'
end

else
cgrOUpnUM ''

0401.1-1d false-,

rep ea.t
* if (lessoninlistart.21 - r OUpnum) then
A p+OUnd :=true

else
istart istart + 1

* unt.I (Qf ound);

*~~-n Chl ~lso~i stat4 '8') or (Ilessoil n1 41start .5] ':)do

whierIess Jesnntat., nrnP

i strt ist ar t + I
end-,

if flessonlrlistart, 4] 'B') and flessonlistart,5] 1 then
Ue q i ni

for ,num S to 9 do
ne' tfrane (10C nentfrazme)

((rord,'lessolnlnistart,-inufrl) - ord('O'))
end

els1
ne,:tfra:me -1

end; Pr ocedur~e F'cq'etion C.

c4A ~ ma- rni' - rt of p:rocedure: 0 r M e

t e c :P rc:edu--e f~framre *}

i 4 (1lessin m Ii =t art.143 'M' then



* else
* 7%' qt'vpe P'I

c s qtyPe of
M Mquestor(istart):
'C- question(istart)%

* end:.

writein; 1to2
for iva1' 1 o do

writ I- e
*write ('Press RETURN to continule.');

*end: (* Procedure Olframe C,

(V Etart Of main. part of procedure: ShowTopic U3~

*beo~r I'* Procedure ShowTopic *3

Peaduinfes:
StOr ePo sitl on s;

nUM aSked = P.C'

C9 rumriqht :'O

score .:
tec-+ false;

* -frame
+or i = to 11 do

f rme .- 10 *frame) + (CordCQ essoln E istart,J) -I Ord ('0')

* j t~~c~~nistrt.) 'T7) and (lessonlnflistart.143 'T') then
test :true:.

i f ~1essom - :trt.2 = 1i~ then

h4: cE ;r sta

flC
4 iQ= and '{vs '' hen

num-s e d =- num ask ed

'I! T=me t

end:i

s + ~ f+ sme:

Pr



repeat

if (lplacelk].framenum =ne>xtfrarne) then
begin
istart Ip] acefkJ. ival Le,
frame Iz place[ k .framenum;le
sfound :~true

end.,
until (sfound) or 1lp laceB.. .f ramenum =-)

end;

*until not (sfound) or (1rlaceikJ.framenum -1):.

i n= rdchoice) -ord('O)'),

j ord(lchaoice) -ord('0'):,

if (test) then
begiin
£1 earScreen;
score nmih/uakd
score :~(score *100.0);
writein ('Your test score 'soe-:,~)
writein;
if (score MINSCORE) then

beqi n
writein ('CONGRA~TULATIONS' YOU HAVE PASSED THE LESSON TEST.');
n~upil.toPicsEi~. 1 +

nPVPil.lessonsfxi '-'

end
else

berii n
writelr, ''Sorry, tut You missed too many questi ons to pass the test.');
wr I te In-,
write C1 sucigest that you review at least ore topic before you ');

wri teln ('retake the lesson test.');

npuF-il.lesonsi2j

topircstatlil
end

end
else

beoin
Cl ear c-Jreen;

t oMic -t atE I +

end,

end: * Procedure ShowTopic C~

* Date: 9,11.195 *
* Version: 1.(f *

26



)k Name: procedure RecordStats *
t Module number: 6.2
SDescription: Reads file "STATS" and adds statistical data from current L

* session.*
# Passed Variables: None
t P-,etLtrns: Norne

* Global Variables Used: printin*
t * lobal Variables Changed: printlnt

F iles Read: Stats! templ
* * Files Written: temr.2, stats

. Modules Called: None*
t CallinQ modules: StartLesson

t Author: Capt Frank W. DeMarco
History-

* 1.0 FakW. DeMarco 8/1/85 -input original code

procedure RecordStats;

i :inteaer;

begi~rC Procedure RecordStats *11

vir i telI n;
wr teln r ('One moment please, while I update my records.')

reset (teipl);

*rewrite -'t em v!2)
r rsse t 1,s t at fil e)

rep eaet
while rot (eof(stat ,le)) do

b zni n~

f or i:1 to 00~ do

rea-din (statf.,le.grintln,',,
wltln(ter,-P2, pr intl n)

end:
* ~~urtil feof(sta-t-le)

while not feoftemc1)) do
be~i n

+ or :~I t o 80I- do
::r~ntlI~i1

reatdr. (temp1 I. pri ntln',
i piteln ( temr2. pr-i1nt n)

e n.

e f I



reset (temp2);
rewrite (statfile);

repeat
while not (eof(temp2)) do '*-

beain ,¢ d
for i := 1 to 80 do ""."

println[i]
readln (temp2,println);

end:
until (eof(temp2));

rewrite (templ):
rewrite (temp27);

close (templ):
close (temp2);
close (statfile)d

end-,~ Procedure RecordStats U-

. Date: 9/1195 * j
Version: .0*

t Name: procedure StRe- "
I Module number: 6.3 * 2
t Description: Writes updated student course progress data to file
I "STUDENT".

Passed Variables: None -
Peturns: None .
Global Variables Used: studentcount, rpupil, npupil .
Global Variables Chanced: none "
Files Read: None *

4 Files Written: student -
Modules Called: None
f74 Ce4linQ modules: StartLesson .2

Author: Capt Frank W. DeMarco -
1. Hs t ory:*

t 1.0 Fran W. DeMarco 81,'! . 
- input original code "

proced,_,re Stuec:;

i, ii, integer:

beai n Pr'iocedure S tFe: U

rewrite (student)"

.. .. .. .



*for i 1 to studentcount do
* .if (rpupilliI.StUdentnUmber fpLpi StUdentnumber) and
*(rpupil~i).studentnumber )then

begin
write(StUdent':) .

for I to 11 do %.;.

write(studentqrpupilli ).Studentnumber 1]);
for j := 1 tci28 do

write (Student. rputpil~i].Stuidentnametj)
for j :=1 to MAXLESSONS do

write (stuident. rputpili3. lessonsl);
* for ii 1 to MPIXLESSONS do

beain
if (ii MAXLESSONS) then
for j := I to MAXTOPICS do

write (Stutdent.rputPil Ii .topiCSfii,j])
els~e

bealn
for 1 to (MAXTOPICS-1) do

write (student~rpupil~iltopicsii.1 )
writeir (student~rpuipilli).topics~ii,1AXTJFICS)

6o end-,
end:

end-,

for i :=1 to 11 do
wr it e (5t Ldent nPUP 11 S tUdentnumberEi]1)

+or i :=1 to 283 do
write (StUd~ent, npUpi I . St~ldentnjameE i 1):

for i := I to MAXLESSONS do
write(student,npuipal lessonsEV-)

* for i := 1 to MAXLESSONS do
begin
for j 1 to WMAXTOFICS do
write (student.npupil.topicsi)

end;

close (student)

end: I'* Procedure StURec *1

* Date: 8./1:85*
t Version: 1.0*

$ Name: procedUre StartLesson
* ~oModule number: 6.0

t Description: Displays topic- choices for a lesson, prompts Student for *
choice of topic to be shown. Driver of procedures that*

* display lesson material and update statistical 14 Student
* propress files.

t F'assed Variatles: None*



$ Returns: None '

- * Global Variables Used: choice, topicstat, linecount, println, advance, S
* * menuin, ichoi4ce

* Global Variables Changed: topicstat, linecount, println, advance, menuin,*
* ilchoice*

* * Files Read: None*
$ Files Written: None

* * Modules Called: ClearScreen. ShowTopic, RecordStats, StuRec
* Calling modules: program CAI *__

*t A Lthor: Capt Frank W. DeMarco*
Hist-or/:

- $ 1.0 Frank W. DeMarco B/1I8/ inPUt original code

procedure StartLessor:

* 1,~ hd~: :irntecier;
-character char;

b eQIr. r* Proc2Cdure StartLesson *3'

rce choice of
11 assiqn Qlesson.'b:lesson1'):

:ass1qn (lesson.'b:lesson2');
assigni (lesson ..b:lesson3');
ass~'ign tlesson,,'b:2esson-4');
a-ssi Q (1lesson, 'b: Iessonr57f

- 6 a s s qn (lesson,'b:lesson6');
- end-,

inde. : ord(choice) -r(('-

for i :1to MAIXTOPICS do1.

-reset (lesson);
* read (lessor.character):
* linecount :=0;

repeat

while (character = #)and (l.necount K 27) do
bmcqin
for i I t~o 80: do

re~idlr (lesson~println):.
lineCoUnt. := linecount + 1;

read Ulesson.character)
end:.

LT



t. t

if (character 'I') then
begin - --
advance := 23 - linecount;
linecount := 0;
for i := 1 to advance do

writein;
for i := i to 27 do

write (' I)-,
write ('Press RETURN to continue.');
readln;
readln (lesson);
read (lessoncharacter) ,

C1 earScreen
end;

until not (character in ['#','V ]);

for i := I to 22 do
be i n"
for j :I 1 to 80 do
menuln[i,J:

end:

menulnl I] := character;
for j := 2 to 79 do

read (lessonmenuln[Ii]);
readln (lesson.,menuln[1,80]);ae
for i := 2 to 22 do
begin
for 1 to 79 do
read (lessonmenulnli,j]);

readln (lessonmenuln[i,80])

end;

repeat

rewrite 'tempt);
r ep~eat . "

L.:= C) I Q
i := 1:.'.

while (menulnri,1] in ['*','@ ] do
begin
if (menul,[ . ] r? '1'.I then

beni n
4or : . to 79 do
write (menulni,. 1) 77"-

writeln (menulnEi ,8].

end
el se

beci n
I k +

wiiuil

.. .. .. ... .. ...... . . . .



for j-"to8do r

write (menuln~i,~j);
write (topicstatl);
for j := 10 to 79 do
write (menulnti~jd);

writeln (menulnli,80)
end;

end;

* wr~telr;
write ('ENTER THE TOPIC NUMBER OF YOUR CHOICE OR "X" TO EXIT THIS LESSON- )

readin (lchoi);
if (Ichoice in tl'..Y)TOPIC,.','X'J) then

Clear-Screen
else

tegin
Cl ear-Screen;
writer ('Sorry, ',lchoice,' is not a valid response. Please try again.')

en d;

Until tlchoice in ['1'..YTOF'lCq'X'3

* if (ichoice in E'1'..VTOPIC)) then
writein ('YOU have chosen topic number ',lchoice,'. Thank you.')

writeir. ('M:, I will now return you to the lesson selection menu.');

* if (Ichcice in ['1'..VTOF'IC]) then
becqin
cShCwTo~i c;
Reco rid St a t s
St,_(ec;
Cl ear-Screen

end;

cI s e (lesscrn

en ~ -d; Procedure StartLesson *'J

S* tart of main driver: Program CAI

* ~ ~~ beq~~ Procqram CAiI

C 1earSc reen:
StartEndC'S'),
OL er-,'



if (studentcount <=MAXSTUDENTS) then
becui n
repeat
beqin
Select;
if (choice in ['l'..VLESSON3) then
StartLesson

end
unrtil (choice in C'x',.'X']);
StartEnd(EUP
end

end. C* Program CAI *1

OP,.



%.,

P _ '_a"STUDENT TATUS"

- *** THIS PROGRAM WAS WRITTEN IN PARTIAL PULFILLMENT OF A MASTERS THESIS *$*.

-t . Date: 9 .11 8/ *
", * .ersion: 1.0 ,

Title: F'roqram Student _Status *
* Fi eame: STATUS.FAS

Co,:rdinator: Capt Franf W. DeMarco *
t F'ro,,e-t: Masters Thesis "-.4
4 Operating S,'stem: MS-DOS *
. Lar -qe: Pascal
* Jse: Compile and linl with RASCAL.LIB ,,sing MS-Fasca] compiler and linker.*

C t r-er, Frt: rorym Stdernt _StatLs. - Malt Eri.'er. *
*Frcedre ClearScreen - Clears Z-luu terminal screen. * L
t r cedjre Quer,,User - Determines the users preferred me-,od of .
* prcnram output (screen or hardcopy). *
* .4 F-odure Hea - ProduzZ the program report header. *
t F'rozedmre Disp P.' - Frcducec the status report for all students *
* in ile "SIUDENTS". .-

* P'roceure EndScreen - Complete: the screen display format for *
.4 the screen method of program output. '-

. o T r this ,rDrm is to provide a means +or training .-
.4 mar, ~ers, aE weil -as-" personnel o. the CAI Plans Branch (7-0o *
.4 TrHTW -t eesler A, tc cec student progress in the C CAI *

Date: S!,/95*
* Version: 1.C ,

-4 Name: program St.!dentl- atvs '

I Mcdule number: 1.0 *
Description: Main dr,.;er :f prorim -
Passed Variables: None .-

• Returns: None *
Global Variables Used: studentCount. character, advance, choice *

* Global Y.-ariables Changed: st-'dentcount, character, advance ,.

t. Fies Written: None -,
M d s: IId:7e,,-_, Cruer-.1User, Header, Display., EndScreen *

t* C.llino mcZec: .coe , .:-...4
AL'.Kth. r: C---t rr.r W . LeMa'-: .(4".

* . 1.' C :--r .. . .. [:e .. ,rc ,
9 I" - ir . t :~or -al code .4''>

.. .. . . . . .

a- r-.t ,

:L ~f ,:LZ:. Zi-Z:.Z:> .-:ZL , zL 1 -- . . .. Z. .. . .- r. . ,... ,-) F. . . . . . ,.. .. . .



prcgram Student-Status (input.output); 'C

corst
ALINEF1 =

•X
ALINEF'2 =

ADASH = -------------------------------------------
DASHA~ =-------------------------------------------------------V;

NUMLESSONS =;
NJUNTOFICS = .CO;

* ic+ile =TEXT:

war
in+ile : io+,le: =

in::ice,* character : char;,

advance, 1 , st1dent count intecer;

t Data: S'1 /H * 1*

Verosion: I.. *

SN.-me: orocec, re r .ClearScre 9

* odule number: .1 *
t Descripttor: Clears Z-20n terminal screen and sets ,no-wrap" on EOL. *
2 Passed Variables: None *
t Returns: None * r
.. .1.. l Variables U:sed: None *

G ital'.'s riables Chanced: None
t Files Fead: None *

Files Written: None *
* Modules Called: None *

Callirg modules: program Stuwdent. Status )v

(ttor: Capt Frark W. DeMarco *
Hi stor: *

* 1.0 FrankA W. DeMarco 2/1,85- input original code ,

procedure Cler cree:

bE,-. .n , Prc-edure ClearScreen .

*wr '-= E? (~'H 7r (2- C'J chr'2 ;#'w

*~~~~~~ V-a e 0r:-r4.- 1le~r~ *2 - -

4 Date: ' I/5 *

*]i' 2 ::

%.4
p**

p - -,: .-



.. 1%

- * Module number: 1.2*
. * Description: Determines: the users preferred method of program output *

* " , (screen or hardc Dy.
* -assed Variables: chcice *

*'- * Returns: ch,.e *
I Global Variables Used: None *

"* Global .Variables Ch-,nqed: None * -"
G I ale ead: None * C vdN

* Files Written: Nsne * 
. Modules Called: None * &

,%* Fal IinnC mac-tles: pr-ora , Stadent Statu *=
- * * -L.

SC, 1 ..... C. 1 a r rF N m tr L

S I ' F-7 . DeMwrCo 9/ 1 '/S 5 - input oriotinal code *
* *,********* *********** ************************************************** L -

L p*" 2!__-tr _ rhice.-: r 2 r v-cr choice: char) :
'.

t. _e -si * F. edure QueryUser *}

write .The cutut of this program can be put into two (2) different');
,w, it en (' 7 ormats.:

1*Wr I '-rE? tc',wrtteln: .".

wra t l ('If y Ulan on getting a hard copy, type H .

* wr-iteln 'f you only want a screen display type S 2);

(P.. repeat
*. writeln;

write ('Enter your choice here =.
readIn "choice);

*. unt:il (choice in [Ph' ,'H',*'s' ,'S']):.-'

:f (choice in C'h','H']) then
begsin
wri tel n;
writein (''ress .F (ClNTPCL F') and then RETURN to get printout');
r .I , ( ' Press
rc idinr

end

end: . Frnrprrr Q,. ser * . "

.- ' 4 '' '-l

".. r~-e--- -- _ . a Nr - r *

"- S ['e - -r - N-, "- *t : ' ... .. _ _ ," .

.. ** , -__ < -F' 'Vce ';L; 4 
t

c r * r'.-'
.... ....* -': ore

F -,

1,w~

-> -:: ' ~ 4 -- 4&t4-i--.:>- - ~ : .~.av-a:lx



A Files Read: None -
* Files Written: None *
t Module es Ca! l ed: None 
* Ca11tnq. modules: program Student Status, EndScreen * .

A uthr: Capt Frank W. DeMarco * ' '

t Hi t.ory: *
W. Frank N. DeMarco S/ 1/5 - input original c:ode

pr-cedure Header;

be:i" '% P oc-dl , re Heater •

w4r:ten !AIINEF'l,ALINEF'2); .:t 17 A P1 , ' I NT EE -.
rite ('4 THE FOLLOWING IS THE PRESENT STUDENT STATUS FOR =.TUDENTS ON');

wr' = !'THIS DISK. 5');-"
*writln" iNER1, LINEF2.);.-wLr-.e,-IOAL I NEF T -"

wr t STUDENT , LESON LSSON ILESSON LESSON )

w e r SSON LESSON V')
Swr'tE' * 1D # #1 #2 # #4 '

wr:t. e l !r #5 #6 S' ;

;.edure Header }

(*4* * 1 * * * * * 1* : * :* * * * * :* * * * * * * * * * * ** * * * * * * ****************** * * ** .. *

4: ,, .. .. _*. . -

4 , . - i . .... p..

I..... . -i ,.., er : 1 4 .. .

4 "E:T DENTS'. * [

d P_ 4- r -,- *

F-od -as the ... Tr; 4o z-,- il{,

Ft:, e Ci s~Z flch 4 Nrazttr~n *tdei -.

t C_ I Vor * ~ jsE. .. ...F... . .. ....i .. . 4'.. '

W..4 Fi es -+: -- od *
*_.?~ __- ' .. . .4e,"L

:. . . l - 'r r ,- S t u d e n t S t a t u s "

r r
* 1.+ F"an -. Aeir : 9."' 5 - ,Lt cr g'r ]..: d * ;

.: r - .... . ... . .4 : :

:1 r -:t~ t.*cL~t irte:e i""

-. -t...-

C9... -, . . . . . . . . . . . . CC - -

C CC, -C
-CC C' ,-

-C--,CCCC*C*C

. . .. . . . . ..- .. ....- ..- ".. -. ..-...-"-"...-.-...-- ,\ -. -','.. -. - .' .. - .... '.,--'.' > ', - C.,. " .- ,-C - -,-, ., I,,C ' .



studentnunber- rachked array 11. -Il of char;,
* .. studentrname p a cked ar ray rl1 .23) of char;

l essons oac ked arrav- 1l. NUMLES SONSI1 of char-;
topics packed array El. .NUMrTOPICSJ of char;

end;

* ar ON
Pu!i roll;

beuin C* Procedure Display *}

stuf;ent court = studentcount I
0-t.le not (ecln~infile)) do

fcr i 1 to 11 dAn
rad J infileOUpil .studenntnunherliJ);

for i 1 to 23 do
rea d (nflecu p il. stuLd en tnramelCiJ);

f or i :=I -to NUMLESSONS do
read (nieppl.lsosi3

f or 1 1 to NUMTOF'ICE' do

f or i 1 to 11 V

(Sk i f (uc1 1.l efnrtrFum te r: 't' thEnm
k~r- t S?

else

w r , 1 ~1LWc; 'd4;m

if ESNJ. _:f'T

el s

if~~ !iNMLO%:SONS) e

else



"-7.

lf ot (ecf ".ifile) I then

e- ~ Pr rc3 c: Pt4urP:zip1

*t Ye-s r >*

* Nirn,.e: prrr edUre EndScreen*

t Descn i pt:cor: O-cm: Ietes th-e -Fc7reen d =-Ispay format f or the screen method of*

t * Pss-ed Y ri a t 1e s aan ce

cl s4 _z rr i a toe z*Ue rn

pc C4h an ed: Non~e*

- -: F W t - N n*

-D,.

1w *
d 0

e . 4 - I) tr,

C ~ 1 e



C* Start of main driver: Program Student Staus *

begin ',* Program Student _StatuIS *32

Cl1earScreen;
ClueryUser I hoic e):
ClearScreeri;

assicr n (inf+i Ie. S tdent'

r e t eat fi

student-lutnt C.
whi caats e :. and (stUder -o unt 16) an-.d not eo-f in f i Ie) doc

adicwl 2,a . t LtaratR r. t in t + 6t
--. ,r 7r~- L- E-

End~- eenF fadvance)

if( in 1 s 'S. t h en

wr te r (AL I NEF1.AL INEFC)

'td ~ F-rr~ 5 tudent _SttulE *



Pr-ora"CISTATISTICS"

(*** THIS PROGRAM WAS WRITTEN IN PARTIAL FULFILLMENT OF A MASTERS THESIS **

t Date. 10/1'_/95
t eso:1.0*

4 Filenaame: VALI DATE.FPAS*
S coord-inator: Caot Frank W. DeMarco*
4 Pro iect: Masters Thesis

i Operatinq System: MS-DOS
4 Lac~ :Pascal

4Use: C.omile and lint, with PASCAL.LIB using MS-Pascal compiler and link..er.*
t Co .t en t s F'R'0iCPM C;Ai Statistics -Main Driver

4Procedure ClearScreen -Clears Z-l00 terminal screen.
F rcedu1,re Cueryllser - Determines the Users preferred me+ho-d of

.4 ronoram output (screen or hardcc,,).
4 Fr _ __ z-:.der - Produ!ceS the prouram report header.

P'r c,-e , ELt- - In~tialie array and two link lists used in *
4the proqrn as wellI as openino file 'STATS". ,*

F- c F- d ure Peadctats - RPeids file "STATS" into Ca linked list of*
4 fra--me records as well as bUi Ids a~n arrsy,"
4 oc) unique frame identifiers.
4 Hrac-,rt= -!the frame identifier array' into numeric

o or der .
Pr -rc c5drf r i~. Url Dri ver for the procCedures that display the *

s tat:5tStcs for each unique question frame. *
4Pr- r:e .P Fi ralScren -Wraps Lm the screen di spl ay af ter- a-(l I

Proedue ~i d~ amLLstitistics have been p'-ocessed.*
c 4, _,idFriL C onst ruc t S a 1 irnked i st of f rame r e- r.

Procedurecords that are of the same f rame.
Prcdr Init.DisplEav - Initilizes variableS Used in statistic.al*

* anal vsis.
P-c ? f-d r ShowE~tats -. Analyzes e:nd displays Statistical data *

f stored in the linked list of frame records*
4. (of the same frame). t

4 P~oceureEnd~creen -Wraps: Up the? screen display after there *
4 has beer a, f_1ll screen displayed.*

f F, - r:: Tt ;E this Proqrc~om is to --ro. de . means for the OPP *

tz 4 Paidt cre aer, and teaching effec-*

E* E i on .

4.IV

~ **~ 14~* 4** 44:4k* 4*4 4 ~*44444444C-444**44*

oi r~ -T S t~ t s

* 4 ~ 7,



* Description: Main driver of procram *

..-. t Passed Variables: None ,
e* Rturns: None

* Global Variables Used: choice, character. stats, linecount. dindx *

.* Global Variables Chanqed: dind -
- At Files Read: stats *

Ft Files Written: None *

At Modules Called: ClearScreen, QuervUser. Header, Init, ReadStats, Sort. *
* *t Display, FinalScreen *

t Callir.g modles: None *
* , *..-'

.* Author: C'nt Fr-rk W. DePeNar r c r

t Hi .s tc': * -
I . F rarnk 1W DeM-rco /If' /SK - irj :ut or iinal code *

i ~ ~ ~t* *** *1 At *** *t****A*********************************************************.

-. pr*c a m CAI t.. a t d c s - , U t t
-_ prc.nCZ'' ..a..tcs t:Fnput ctutput); 2.

c-nf-

flDAnH --- ------ - ----- -- ---- - --- - - --------------

Y, L '' '

iofil TE'XT: v-tr

ct -- st- - = record
ltframe_.num : integer4;

.aswer : char;
sresponse : char;

end;
Sts Elrra r 5Q o inteqer4,
4,.-.,n.ecloz;ne = ',rarerercl [

-- mracrk "- r
C4 anr : har;

met : trameclone
end;:

D. r

in~~l ~ I s S::S:....

+1>'=- fr-metead, node. filerode, +ramenode : franmeclone;
-'c:h '- "-- Chclce : char;

adar c-'.:Tt,* dd r* z tot r, tot w : inteoer

,r _A, npBr, L um 1, m _,D. num_E, nun_Y, numN : integer;
nuL'TS -em -r'._17.ht, num wrong, percent rteht, percentwrong : real:

•"- 4'

- -.:.-. ... *-.a . . . . . . . . . . . . . -.. . .



K * Date: 10'l15.'95*
t Vers,.on: 1.': *

* 4 Name: CleEar~creer
M odule number: 1. 1*

4 ec~to:ClearsZ1' termal, screen arnd sets "rno-wrap" on EOL. *
P assed Variables: 1+ri, n e.
Ri etur, s

I* a. 1~ 4r' aH hIe sed: None

4 ri - i - R e d ', r ro n -en c d N n

* 4 Files IWri . er- None *v
4 Mndul I fl: a 1 1ed None*

C* I -lar i n OdUIlp' rocram 'A -Stait stics FinalISc reen4 EndScr een*

A uthor:~ Cant Frank IN. Demarco

** 1.0 Frank 1W. DeM.3rro 1c)/ 15/935 input oh Igi nal code*

p rocdre Cl -eupIrScreen1

f'~1f Pr ed; :jdr -Cl e.cr reer, *k

user I-p~r v ''-I' c+'' pi'r i hr?"
7

1...'

4! r

s Name: d None~

- *~~ &'~De 25 F r ~ o~ ' c-c

I -. tae I: rh.a drcv)d

17P



:rccedure OQervUser (vrchoi ce: char):

bec , n {, Procedure Cuer 4iser U,.'

wr.ate ('Th7e out-rlut of- this program can be pult into t~o Q2) different'): A'

*Wri;en I '1 yo 0Lplan( on getting ahard cop'y, ty.Ipe H 2)

w, t ein T'f uu onlIV want a screen display ;type S .)

wr: t e In

*wri te 'Enter .orchoi ce here

U unt:i Vlhci c e i n C~h ,H' S'' -3')

i f c e inr P'h I. *h P n
boo:i r

writr. ('Press c (CONTROL F) snd th--en RETURN to get printoult');

ea n

end: It Procedure OvLer -'ULser C

* N.alme: Hae

4 Pjr--- Od L ecv- S t t*epr r :-T.r

* ~ '-ar- 4. n: None*

* -zr a rc e*:11l -11 N r

4t '~' I rank ',p. DeN-.ca *r,'I'/f .:Lt iQ :-.

t. F '1' d~ enpor~ WS-+ c- n~re

* 0 "r. nAT. Oe



writeln (ALINEPl.ALINEP2);
w r Ite ( L # !FF i *f A~ *I jH C 1 -4 E # N *)

wrlteln (ADfl3H,DgHH)
* end; * ProcedUre Header *3K

a's

* * Date: l0/15./85*
* * Version: 1.0*

NaDme: Init*
M odule number: 1.4*

** Descrition: Init .alizes arr-ay and two, link lists Used in the program as*
* well as;. opening file "STATS'.*

* Passed Variaibles: None*

* Glnbtl '.'a;riab~les Used: stats, fileheaid, filenode, node, framehead,*
framenoide, character*

G lobal:rzb~ Chactced: stats, filehead, filenode, framehead, fra--,menode *

* character$
t Files Read: stats*
A Fle - 1.ritten: None*

-* Nn es Caltled: None*
I4 -~1nodules: proqram CI Sat-stcs

t ~ 1 r~ -a~ Frank W. DeMarrn
t1 H±i ta, o

I ± -i 'ni: '4. DPEearcc l0ir l/5 inaut or iqinalI code*

ar

tec~n Frucdure it 13
for 1 1t:) 15C

+ fiehed e 1c

* ~ ~ frend : -. dr

£ e !7~ *:A - T dE

ass C r +u~aEtt.:

ei". I e . cd _ r.t

r 0..



SDac_: 10/1'5/85
Version: 1.0

* Name: ReadStats0.le
* Module n~imber: 1.5
* Descri~tion: Reads file "STATS" into a link-ed list of frame records as *

* well as builds an array of unique frame identifiers.
* Passed Variables: None

t Returns: Norte
* k Gloibal Variables: Used: tempbuff, stats, node, filenode, character-*

61 albal Variabl es Chanced: tempbluf f stats. f ilenode, character
** vces. Read: st-ats

t Files WNritten: None
* * Modules Called: None

I £e-'II in imo dules: proiaram CAI Statistics

A- ith~or: C apt Fr -an k W. DeM a r7-o
* ~ ~ C- ~1tr y:

1 F i r ra nk W D M a r z. 1~S n iP Ut o r1in a coad e*

* : intzioer;
* ±n-umb::r inteqer4;

irchar :char;
- found boulean;

*b bec C* Procedure Fe5dStats *3

* ±~number :0

f nUmber I 1 f nUimber)-- (ord (charac ter) ord 'i )

b ei i r
r e d rinf iIei n C Er)
fni Tier 1f t'C 1number) + (c (od i nhar) ) - rd(C'

end,

t emrp tufIlt f rzne nurn : LUt e r

-ead inflle.tenbuff.c.rnwer)
r rad 1(rnf I e. temnpt -J4- . re sr-n s E:

1 t a iC . C) doa

i f It[j I emb! f 4 .t~r 2~+hF

+. 1
erd,



if not (found) then

statsVi] := tempbuff.ltframe num,
-.'. new (node);

filenode .next := node:
filenode : node;
filenode'.ltfnum := tempbuff.ltframenum:-

L-. filenode'.c ans tempbuff.c _answer; ,

filenode'.s ans : tempbuff.s response:
:. filenode".next nil;

if not (eof(infile)) then
readln (infile);

if not (eof(infile)) then
read (infilecharacter).

end: { Procedure ReadStats *}

Date: 10/15/9'5
** Version: 1.0

* Name: Sort *
* Module number: 1.6 *
* Description: Sorts the frame identifier array into numeric order. *

*. * Passed Variables: stats *
* Re4urns: stats *
* Global Variables Used: None *
* Global Variables Changed: None

_ Files Read: None *
Files Written: None *

:* Modules Called: None .

Calling modules: program CAI-Statistics *

* Author: Capt Frank W. DeMarco *
Hi st ory:

t 1.' Frank W. DeMarco 10/15/85 input original code *

procedure Sort(var stats: stats _arra,,,;

var

temp : integer4:
-sind,:, , val. ima;: .nteqer-;

beoin {* Procedlure Sort C"

sindx: := 1:
while (statssind - C ) do

be-s
-max : ima! +1
sind'f srd: + I

end:

B 47

. * -- *.. ** . ; . .. .* . .. . .. ..



:b:fosidx: I to (imax-1) doSrepeat ,-..-.

begin
temD : stats[sindx]:
if (temp stats~sindx+1J) then

begin 2"
stats~sind .]  stats[sindx+:] -.

stats~sindx+l] := temp
end:

sind; := sindx + 1
end;

ima.< := (sindx-1);

until (imax = 0);

end: • t Procedure Sort *}1-

Date: 10/15/65 .
Version: 1.0 -

Name: Display .
* Module number: 1.7 -

Description: Driver 4or the procedures that display the statistics for *
* each unique question frame. .

Passed Variables: None "
* Returns: None *

LO Global Variables Used: filenode, filehead, framenode, framehead *
Global Variables Chanqed: filenode, framenode -

t Files Read: None "
Files; Written: None "

t Modules Called: BuiidFrameLL, InitDisplay, ShowStats -
Calling modules: program CAIStatistics *

Author: Capt Frank W. DeMarco *

S Hi story: -
f 1!.0 Frank W. DeMarco 10/15/95 - input original code .

procedure Display;

" 2f Date: 10/15/85 *
* ft Versior.: 1.0*

Name: BuildFrameLL *
Module number: 1.7.1
Description: Constricts a linked list of frame records that are of the

fsame frame.

t Passed Variables: None
:,* Returns: None

Global Variables Used: filenode, stats, node, filenode -

•.- Global Variables Changed: framenode, filenode .
:::- 4:S:p \-

P' -"

, /:-::-

K::' v v ... .. -.:., ....- .,- -.,... .-..-. :-..:'-:, .:.-.-',-...,:- . .. .. . ...-. ..-.: .- -,, -, ... . ..: :'



* . -. Fires Written: None
* * Modules Called: None

* Callino modules: Display

Au~Lthor: Capt Frank.: W. DeMarco
History:*

t 1.0 Frank W. DeMarco 10/15/85 input original code

* procedure BuildFrameLL;

begin {*Procedure BuildFr-ameLL *31

if (filenode%.ltf nuIM statsdind<J) then
begin

new (node)
f ramenode-.net :t node;
framenode node,,
framenode'. lt{_nurn: filenode-. ltfnum;,
f rarnenode. c _ ans :fi lenode".c -ans.;
framenode.s ans .=filenode".s ans,

rameno de n e., nil
end;

filenode :~filenode--.nevt:.

end , Procedure BuildFrameLL *}

Date: 10/ff/85
Versu.on: 1.0

* Name: InitDisplay*
t Module number: 1.7.

* Dezcription: InitiliZes va~riables Us~ed in st.atustical analysis.
f Fassed Yariables: None
t Returns: None

5 1Qbal Variables Used: adv.ance, num seen, niimr_right, num_wrong,*
$~~~~ -ecent _right, percent wrong, nUm A, nmB u

* *num-D, nurnE. nUrnPY, nUmN
G lo:bzkl Variables Charged: advance, num seen, nUm right, num wrong-,*

*percent _right, percent wrong, num-A, num-B, num-C*
t n~mD, nIME,, nMY, numN

S File= Prod: None *
* Files Written: None
* Modules Called: None*
* Callirio modUle-S: Display *

* $ Author: Capt Frank: W. DeMarco*
H, istcry:

* 1.0 Frank W. DeMarco 1C!r/~ - Ip'ut oriqinal code***** ******

* ** ** ** ** t* ** ** t* ** * t* ** ** ** ** ** ** ** * ** ** 4(-P **



procedure InitDisplay;

beqin C* Procedure InitDisplay *1

advance 0
nUhll seen 0.0;
num right 0.0;

* num_wrong :=0.0:)
percent right 0.0;
percent wrong :0.0:,
num A 0
nurn B 0;
num C 0

%nUrnD
nLufnE 0
num _Y 0;
numN 0;

end; r* Procedure InitDisplay C.

.* Date: 10/15/915
Version: 1.0

* Name: chowqta t s
* Module number: 1.. c

- t Description: Analvzes and displays statistical data stored in the linked
Le t 1st of frame records (of the same frame). L

* Pas=sed Variables: None
* * Fetu.rns: None*

t Global Vari-ables Used: framenode. ruIm right, numfr_wrong, num seen., num_-A
**numB ' numC, num_0 , numE, num_Y, numN . totr *r
* ~tot w, percent _right, percent wrn.linecount *

advance
** Global '.*riables Changed: framrenode, num_right, num wrong, nL~m seen, num A*

num_,B, numC, nUm_0 , numE, nUmtY, numN, tot r *
* * totw, ~percentright,. percent _wrog lieun

* * advance
t Files Read: None*

* Files- Written. None
t Modules Called: End~creen

* * Calllnq modules: Display
t
f "uthcir: Cap Fr-nd W. DeMarco*
X Hi stor f::

f I FrankA W. DeMarcco 10)/15/9~-5 input original code

- :r-ced re §'ovwstats;

var
1 esson -number, frame rnumber : n teger4:

............................... ......)



* * Date: 10)/15!95*
Version: 1.0

* Name: EndScre-en
* ModulIe number: 1 7.. 1

* * Description: Wraps UP the screen display after there has been a full
scr-een displayed.

* Passed Variables: advance
R eturns: None

t Global Variables Used: linecoutnt
* ~ ~ c ~ct1VriablEs Chanqed: linecount
** Fles- Rrea;-d: None

* flis Wr-ten: Njone

* * ModuleS Called: Clear -creen, Header
* CallnQ~ modules: ShowStats

Au t ~uh o-rapt -r an 1.VI. DeMar z o
* Historv:

n p* u~ ln t o r icnnar c 0d e*

n cr cduP En dSI: r een (ad- vanc: i nt eqer

0 be zfr-. Fro;cedure EndSCreen *

c ador 1a n c- ' 1 ? e 1d da
beq r.

v*v i I

e - r t l n

wr4.teirA (It PNE1 'AL INEF2)
1 c~ L CJ

wr ite (

wirit e Pres. RETURN to cont nue.')

Cl ear~ren:
* Header;

t r of; tr{r ,.,ir-4- Em ohred re:

bea i liFoedr howStats: *1

wh I e afr 9 e il d

.........................................................



lesson _number (framenode'.ltf num div 10000);

* *frame number (framenode".ltf nUm div 1000),

frame-number (frame number * 1000);
frame number (framerode'.Itf _nUM - frame number)-,

if (fr,_Amenode'.s ans = framenode".c ans) then
nmr h u.rat+ 1.0 V

nun _wrona nurn _wronq + 1.0
num seen :=num seen + 1.0;
case framerode-. s eans of

W num A~ numA + I~
numEB num, B + I~
num C :numC+ 1;

V Y: nUM r :nUmD + 1:
U:n umE nurnE + I;
Y':nUMY :nUlm Y + 1I

WN : num _N numeN + 1;
end;
framenode :framenode ne-~t

end;

percent~ri ght :=( (nUm rit -umseen) *100.0);
percent wrong :=((numwrong .!nun seen) *100.0);
tot _r trUnc(nUM_right);
tct _w trunc~num_wrong);

if (linecount L217) or (choice in E'h' 'H'J) then
begin
write (* '1 esson number:1,' 'f rame-number: ')7
write (r n A:2,' 'numB-.i. 'n um C :2., numD:2:,'
write (n!!rE:2 *nuIMY: 2, ' n~lmN:2.'
wr it e (ttr:.' tot _w:-", ' ~
wr itIe (.,e r Cent r rht: .:I,' :'percent _wrong:-5: 1, V')

ii reC:OUnt : ieOn +~~ ~ 1
end

else
E.I i n

--nd ;--en 'advncp)

* ~ ~ l r C: L- - s 3-~ -- -

* ~ ~~~ i**?k*****~****** I e*n*--,,A**e*h*e*d*e



* iramenoue : rameneau;

r epeat

SLAt 1 dFrameLL;
*Unt il (f ilIenode =nil);

fr amenode :~framehead . ne,:t-

e nd; 't Proc-edure Display *2'

* * Date: 1015'85 *

- * Version: 1.0*

* * Name: FinalScreen*
# Module number: 1.8

t Descr i 1on: Wraps up the screen display, after all statistics have been
A processed.*

* 4 Passed Yzi~P:None*
V eturns: None*

G :* lb al V aribles Use- d: advancre, IlineCOUnt, dindx *
*4 Slclbal. Vaiablec. Chanoed: advance, dindx

* ~'' ~'ed:None
4 , Written: None-
* Mo d 121r:s Call e d : CIl ear~creen*

-21 i ',q modul.es:: proaramr CAI _tsati Erti cs

4 ittcr: 'CO t F r a nk I+' W1 Mar-co*

* .1. F an k V1. De Ma-rco l0_+!1R/O_5 - n,,ut. oriqinal code*

L-jI-

+ - d- rZV . -diod

err'

* r r FsPTUXFN toD end pr zET m'

- rC, 1 e

E, Clr ItP-C et '



R-0163 42 COMPUTER RSSISTED INSTRUCTION FOR THE 'C ' PROOR ANING 2/3 -

f LANGURGE ON THE ZEN..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFI OH SCHOOL OF ENOI.. F N DENARCO

UMLSIIDDEC 85 RFIT/GCS/NA/85D-2 F/B 9/2 N



1. 1321 -L

jjjjj 1.1 ,2

111 lia -

MICROCOPY RESOLUTION TEST CHART



(* Start o+ main driver: Program CAI-_Statistics *

begin fCt Program CAl Statistics t}

ClearScreen;
QueryUser (choi ce):
Cl1earScreen:

writ e1n "'One moment please ... reading statistical collection file.');
while (character in C'1'..VLESSONS)) and not (eof(infile)) do

RPe a dSt ate;_

Sort (stats);
Header;

dint : 1

didi : dint : + 1;
uint-Il (stats-tdind:] 0):

1+i:-homre in r's','S'J) then

Fn-:;!Screen

writplr tALINEP1,ALINEP2)

rd 3Proqram CAIl Statistics *1J

1~7-



-. - -- *. 1.1 .. 07

Appendix C

Files Used by Prooram "CAI"

File "INTRO"

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE

# WWWW WW EE LL CC 00 00 MMM MMM EE

# WW WW WW EEEEE LL CC 00 00 MM MM MM EEEEE
# # WWW WWW EE LL CC 00 00 MM MM MM EE
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

. #

# TTTTTTTTTT 00000000
# TT 00 00

# TT 00 00
# TT 00 00

# TT 00000000

SCCCCCCCCCCCCCCC.

# ... CCCCCCCccCCCC ....

# CCC
# CCC

# CCC
# Cccc -,

# CCCCCCCCCCCCCCC

# THE COURSE YOU ARE ABOUT TO TAKE WAS WRITTEN BY CAPT FRANK DEMARCO
# # IN PARTIAL FULFILLMENT OF HIS MASTERS DEGREE IN INFORMATION SYSTEMS.
#

# THIS COURSE IS DESIGNED AS AN INTRODUCTORY LEVEL COURSE FOR THE "C"
# PROGRAMMING LANGUAGE. THE OBJECTIVE OF THE COURSE IS TO PROVIDE
# ENOUGH INFORMATION TO THE STUDENT SO THAT IT MAY BE POSSIBLE FOR
# THE STUDENT TO BEGIN USING THE "C" LANGUAGE FOR HIS/HER PROGRAMMING

# NEEDS.# TL
*' * THE COURSE, AS IT CURRENTLY EXISTS, CONSISTS OF SIX LESSONS."-"

,..........................................

•... . . . . . . . . - .



File "MENU" p

S SELECT THE LESSON YOU WISH TO TAKE FROM THE FOLLOWING:

* STATUS LESSON # LESSON TITLE 8
-- -- -- - - -- - - - - -

I GETTING STARTED WITH C*

@2 VARIABLES, CONSTANTS, OPERATORS, EXPRESSIONS 8

-~ 3 PROGRAM CONTROL STATEMENTS *.-

@4 POINTERS AND ARRAYS*

@ 5 STRUCTURES s

@6 INPUT AND OUTPUT

-. s NOTE: A "STATUS" OF SI~INDICATES LESSON SUCCESSFULLY COMPLETED.

********SS*S*S****SS**SS***S*SS$~gg***S$*SS*S***

J7



~FilIe "°IESSONI" . ,

il# WW WW EEEEEEEE LL C:CCCCC 000000 MMM MMM EEEEEEEE

-"# WW WW WWd EE LL cc O 00 D MMM MMM EE
[.# WW WW WW EEEEE LL cc 00 00 MM MM MM EEEEE ..

# WNW NWW EE LL cc 00 00 MM MM MM EE -
I.

"" WWW WW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

# TTTTTTTTTT 00000000 t
# TT 00 00
# * TT 00 00
# TT 00 00
# TT 00000000

# LL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 111
# # LL EEEEEEEE SSS SSS SSS SSS 00000000 NNN NN 1 11
# LL EE SSS SSS 00 00 NNNN NN 11
# # LL EEEEE SSSS SSSS 00 00 NN NN NN 11
# LL EEEEE SSSS SSSS 00 00 NN NN NN 11
# LL EE SSS SSS 00 00 NN NNNN 11
# LLLLLLLL EEEEEEEE SSS SSS SSS SSS 00000000 NN NNN 11111111
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 11111111

# THE LESSON YOU ARE ABOUT TO TAKE CONTAINS INTRODUCTORY INFORMATION
# ON THE COURSE AND SOME GENERAL INFORMATION ON C PROGRAMMING.

# THE LESSON CURRENTLY CONSISTS OF FIVE TOPICS.

# The Lesson Breakdown Is As Follows:

# Topic 1: Introduction to C CAI course - This topic gives a short
# introduction to the overall course structure and some of
# the particulars used in the course. (Approx. time 5 min.)

# Topic 2: C Program Organization - This topic discusses the overall
# organization and structure of a typical C program.
# (Approx. time = 15 min.)

# Topic 3: C Program Environment - This topic gives a description of
S# the overall C programming environment covering such items

# as "compiling", and "linking". (Approx. time = 10 min.)

4 Lesson Breakdown Continued:

# Topic 4: Your First C Program - This topic states a problem to be solved
# and presents a solution for you to help familiarize you with r
4 C program statements. (Approx. time = 1m rin.)

C-3
4 .- . I- L



I 140

#*
-- # Topic 5: Lesson 1 Test - This is the lesson test over items that have

# been presented in the previous four lesson topics.
# (Approx. time = 5 min.)

# TOTAL LESSON TIME IS APPROXIMATELY 45 MINUTES.

#

# I hope that you enjoy it!

* S8 SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING: S-

t STATUS TOPIC # TOPIC TITLE t

1 Introduction to C CAI Course

2 C Program Organization

@3 C Program Environment

@4 Your First C Program*

@ Test Over Lesson 1*

S NOTE: A "STATUS" OF +"INDICATES TOPIC SUCCESSFULLY COMPLETED.

IlFrame 100 T INTRODUCTION TO C CAI COURSE
12 As a first topic subject I will tall, a little about the C programming

-12 language computer assisted instruction course as a whole.
* ~~12 Ciscniee alo-ee geea prps prramn lnga.

12 Ciscnieealo-eegeeapupsprgamn lagae
- 12

12 Its classification as a low-level language does not do it justice
*12 though. The language does not provide for, among other things,

12 implicit input or output or for direct file access, but these
12 capabilities can be preformed by the use of explicitly called
12 functions (procedures).
12

12 The C language is a small, straightforward, easy language to learn.
12
12 Let's take a look at what we will be covering in this course.
13B:105

IlFrame 105S T
-12 This course is broken up into six major subject areas. Each of

C-4



J, W-*

12 these six areas are further broken into small topic areas. The
* 12 goal in organizing the course in this way is to make it easier
- 12 to understand as well as speed up the process of subject review.

12

12 The following is a lesson breakdown of the course:
* 12
*12 LESSON # LESSON TITLE

12 -- - - -- - - - - -
12
12 1 Getting Started With C

*12 2 Variables, Constants, Operators, Expressions
1 2 3 Program Control Statements
12 4 Pointers and Arrays
12 5 Structures
12 6 Input and Output
13B:110

SliFrame 110 OM
12L-et's see if you have been paying attention. How many lessons did I say are
l2in this course?

*13A Four

13B Five
13
13c+ Six
13
13D Seven
14 Very good! You are paying attention.
14 B:115
15ABD No. The correct answer is Six lessons ("~C").

*15 B:115
15E I'm sorry, "8E" was not one of your choices.

* 1S B:110
IlFrame 115 T
12 What you just saw was an example of one of three types of questions I
12 can ask during the presentation of this course. The other types are

*12 True/False and Yes/No questions. The responses that I can recognize
12 are as follows:

* 12
12 Question Type Valid Responses
12 -- - - - - --- - - - - - -
12
12 Multiple Choice A, B, C, D, E
12

*12 True or False True, False, T, F
* 12

12 Yes or No Yes, No, Y, N
* 12
*12 Note: For True/False or Yes/No questions I will only look at the
*12 first letter of your response, so to save time it's best to

12 enter only T, F, Y, or N. (Answers may be in lower case.)
13B:120

C-s



7-T~. VT",..

IlFrame 120 OP
M2et's give it a try.

.V 12
12This is an example of a True/False type question. (True or False)

* 13Y
14 You are absolutely correct.
14 B:125
15 Wrong! Are you yanking my electrons?
15 B:125S liFrame 125 T k-
12 As you will no doubt notice, there is a test at the end of each
12 lesson. In order for you to receive credit for taking this course
12 you must successfully pass each of these tests.
12
124 There is no set lesson order in taking this course, nor is there a
12 requirement to view each topic before taking a lesson test. It is
12 suggested that you do take the course in the order established for
12 reasons of material continuity and in order to enhance understanding.
12
12 It is very important that you do not interrupt the CAI program once
12 it has been started. Your progress is only recorded at the end of
12 each lesson topic. Please exit the program by answering "X" at the
12 topic selection menu and the lesson selection menu.
12
12 You can check your lesson and topic progress at the selection menus
12 by observing the "status" column displayed.
13B: 130

(.9liFrame 130 T
12 While taking this course you can be an invaluable aid in making it
12 better by taking note of errors in the course material. If you
12 should notice an error or believe something to be in error, just
12 make a note of where the error appears.
12
12 To make this task easier, I display for you all the necessary infor-
12 mation. Just record the lesson number, topic number, and of course
12 the frame number of the frame where the error appears. Recording
12 only the frame number will be of little help since each lesson could
12 have a frame with the same number.
12
12 I just have one more thing to mention to you before I return you to
12 the topic selection menu.
13B: 135
IlFrame 135 T
12) A word about the lesson tests.
12
12 The last lesson topic for each lesson is a test over the material

*12 covered in the lesson. As I mentioned before, these tests must be
12 passed in order to receive credit for taking this course.
12
12 When you take a test, you will be given information during the test
12 which will help you in locating the material that gave you problemsr
12 on the test. The way in which this is done is by reference to the

C-6



12 lesson topic and frame number where the material was covered. An
12 example of two types of feedback you might see are:
12
12 Right. (2,245) <OR> Wrong. (2,245) L
12
12 The reference follows the format of: (lesson topic #,topic frame #)
12
12 $$$ This concludes this topic area. $$
13END
21Frame 300 T C PROGRAM ORGANIZATION
22 This topic will discuss the overall organization of a typical
22 C program. For ease of understanding, I will restrict the
22 discussion to a program that is contained in one source file.
22

22 The organization of the program file would look like the following:

22 1. Preprocessor Statements Section
22

22 2. Global Variable Declarations Section

22 3. Function(s)

22
22 4. Main Program Driver
22
22
22 Each of the above will be discussed in this topic section.

238:305
2lFrame 305 T
22 $$$ Preprocessor Statement Section $"
22 .-

22 Through the use of a preprocessor, the C compiler has the capability
22 of: file inclusion, token substitution, and conditional compilation.

22
22 Preprocessor statement lines are defined in the C program by the use
22 of a # as the first character on a line. These lines may appear

22 anywhere in the program, but it is a good programming practice to
22 place them at the beginning.
22 ,

22
22 We'll take a quick look at each of these preprocessor capabilities.
23B:310
2lFrame 310 UM
22Which one of the following is "not" a capability of the C preprocessor?
23A Conditional Compilation
23

23B Token Substitution

23C+ Function Definition

23D File Inclusion f ,I
24 Very good, you're so right.

C -7

..........................................................................



24 B:315
25ABD No. Answer "C" is the correct answer.

25 B:315
25E I'm sorry, "E" was not one of your choices.
25 B:310
21Frame 315 T
22 $ File Inclusion "
22
22 The preprocessor control line of the form: #include "filename"
22 will include the contents of the file specified in the source
22 program file. (Note: The shown quotation marks are needed.)
22
22 In addition, a control line of the form: #include <filename>
22 will include the contents of the "system" file specified.
22 -

22 For example: #include <stdio.h> is the usual statement for
22 including the file that contains the standard I/O functions
22 for use with C. We will see more of this later.
22-
22 One more thing: An included file may also have files included.
22
22 This of course should be done cautiously to avoid confusion.
23B:320
21Frame 320 OP
22#include file.dat is a valid C preprocessor "file inclusion" statement.
22(True or False)

*23N-""

24 T-tat's right. You need to have quotation marks around the file name. I
24 B:325
25 Wrong. Quotation marks are needed around the file name.
25 The correct form of the statement is #include "file.dat"
25 B:325
21Frame 325 T

22 $ Token Substitution *

22 The preprocessor control line of the form:
22 "

22 #define token-name token-replacement
22
22 will substitute the value of the token-replacement for each occurrence
22 of the token-name throughout the program.

22 For example: If you have a value that might change with time, such
22 as a mortgage rate, you could use the #define to make future
22 program changes easier like this ==> #define interest .11
22
22 It is easy to see that this capability can be a real time saver. Not
22 only will it make future program changes easier but it will, with wise
22 token-name choices, produce an easier to read and maintain program.
22 Note: #undef token-name is used to cancel the token-replacement.
23B:330

C-B

7:::



2lFrame 330 QM
22Which of the following is a valid C preprocessor "token subtitution"
22statement?
23A #define paygrade = 11
23
23B #declare paygrade 11
23 "''

23C+ #define paygrade 11
23
23D #declare paygrade = 11
24 Correct. Keep up the good work.
24 B:335
25A No. There is no "=" in the valid form of the statement. Answer "C" is
25 the correct response.
25 B:335
25BD No. I think you missed something. Let's look at that again.
25 B:325
ME I'm sorry, "E" was not one of your choices.
25 B:330
2lFrame 335 T
22 $Conditional Compilation -
22

22 You can cause the compiler to skip sections of your source code by
22 using the conditional preprocessor control statements of:
22 #if, #ifdef, #ifndef, #else, and #endif.
-2
22 The statement #if constant-expression will evaluate to "true" if
.2 the constant-expression is a non-zero value.
4-.-

22 The statement #ifdef identifier will evaluate to "true" if the
22 identifier had previously been defined using the #define.

22 The statement #ifndef identifier will evaluate to "true" if the

22 identifier had not been previously defined using the #define.4.-.22 -

22 Following the above statements would be statements that you would
22 want to be executed based on the outcome of the statement test.
23B: 340
21Frame 340 T
22 $ Conditional Compilation Continued t
22

22 The statement #else would be used to identify an alternate section
of code to be executed if the outcome of the #if.. statement test

22 evaluates to false.
22-',".

22 The statement #endif is used to terminate an #if.. #else structure.

22 Example: #ifdef employed /S check to see if "employed" #define(d) $/
4-4 (o.

22 executable statements;
22 }
22 #else /* else "employed" is not #define(d) 5/

C-9
c - 9 ...I



22 .
22 alternate executable statements;

• 22}

22 #endif
238:345 ,.
21Frame 345 9P "'

22#ifndef is an example of a C preprocessor "conditional compilation"

22statement. (True or False)
23Y
24 Yes, that's right.
24 B:350
25 Sorry, the answer is "True".
2: :350

2lFrame 350 T
22 *9* Global Variable Declarations Section $:$
2 2

22 ~henever a variable is declared independent of a function, it is
22 called a "global" variable. The "scope of a variable" refers to
22 the area where a declared variable is recognized. If you intend

22 to use the same variable in different portions of your program,

22 then it may be desirable to declare the variable as being global.

22 When you declare a global variable, remember that its "scope" is

22 only those functions (procedures) that physically follow it in the
22 program. (Note: An exception to this involves the "extern" decla-
22 ration statement which I will cover later.)

. 2B 22 Let's look at an example...
23B: 355
2lFrame 355 T
22 * Global Variable Declaration Example *

22 #include ,stdio.h>
2 int sum: f* Global Variable "sum" /1

22 main() "
22 sum = 100;

addo;
22 addo;
22 printf ("'/.d", sum);
22

22 add() {
22 sum = sum + 100;
22

22 This program would print out the value 300.
22
2 Don't worry if you don't follow everything in this example. You will.
238: 360-,.,

2lFrame 360 OM

22The "scope" of a global variable refers to
23A the number of variables affected by the global variable.

C- 10

-o.



- %. .r -. . .* W .. qgr '5..- . i-.._ .-, - . .. -.- .* J *.- *. I% -" *I- . -- -. -"- - .- 4 ,- - •.• - . * T: "-7

23B the extent the global variable is used in the program.
23
23C the area preceding the global variable declaration.
23
23D+ the area where a declared global variable is recognized.23 '2-
23E the mouthwash of the global variable.
24 Right.

24 B:365
25ABC No. The correct answer is "D'.
25 8:365
25E I'm sorry, variables don't have mouths.
25 B:360
21Frame 365 T
22 *$ Functions *..
22
22 Following global variable declarations in our typical program example
22 is the area where we define our functions. The structure of a function
22 looks like this:
422.

22 return-type function-name(arguments, if any)
22 argument declarations, if any

22 declarations
22 executable statements
22 return statement, if any
22 .

22 A function has certain required parts. Here's an example of a function
22 that fills the requirement:
'2 functionl() 0"
238:370
2lFrame 370 T
22 * Functions Continued .

22 The previous example of a function is an example of a dummy function.
22 The function doesn't actully do anything, but does qualify as a
22 function.
I,

22 Let's look at each of the parts of the function structure.

22 The "return-type" in front of the function name identifies the type
22 of result the function will return to the function that called it.
22 If this return-type is not explicitly named, then it defaults to an
22 integer type. If a function returns a value other than an integer
22 and it is physically located after the calling function then it is
22 also necessary to declare the "function" as that return type in the
22 calling function.
238:375

21Frame 375 T
22 t Functions Continued "

C - 11



- .- . ~ - - -- ,.-.-..

22 For example: float numval, functionl
, -.'L22 ...

22 The above statement would be in the declaration section of the

22 function that calls function1.
22
22 The function declaration: float functionl(numval) .6

22
22 would be used to identify the called function "functioni" and state
22 that the value to be returned by this function is of type float.
22 Note: We will discuss "float" later. k
22

* 22 That brings us to the "function-name" part of the function structure. V.,
22 "

22 The function-name can be of any length but must start with a letter.
22 Note: The character (underscore) is considered a letter in C.
23B:380
2lFrame 360 T
22 $ Functions Continued S
22""
22 The function-name can consist of any combination of letters and digits
22 as long as it starts with a letter and does not spell a C keyword.
22 Note: Keywords will be discussed later.
22

22 Following the function-name is a required set of parentheses ()
22 Inside the parentheses is where the list of passed arguments goes.
22 Each argument is seperated by a comma and appears in the order in
22 which the calling function lists them in its calling statement.

22 Next in our function structure is the area for argument declaration.
22 This is the area where we identify the "types" of the passed arguments.
22
22 For example. float functionl(xy)
22 float x, n; <== argument declaration
23B:385

, 21Frame 385 OM
r 22Which of the following is required to follow the function-name in a function

22declaration statement?

23 "

23B+
238+

23C / /.

23D # #
24 Very good.
24 B:390 L
25ACD No. I think your falling asleep. Let's take a step back.

•. 25 B:380
' 25E I'm sorry, "E" was not one of your choices.
" 25 B:385

21Frame 390 T
22 $ Functions Continued $ r

C- 12

% S" * *



22
".. 22 If an argument is not explictly declared it defaults to type integer.

22
22 Following the argument declarations is a required set of braces 0-
22 Inside the braces is where the function's declarations, executable
22 statements, and return statement goes. Each statement in this area,
22 as in the argument declaration area, is terminated by the use of a
22 semi-colon.
22
22 We'll look at each of the three areas between the braces.
23B:395
21Frame 395 OP
221f an argument passed in to a function is not explictly declared its
22"type" defaults to an integer. (True or False)
23Y
24 You are absolutely correct.
24 B:400
25 No. That statement is correct.
25 B:400
21Frame 400 T
22 * Functions Continued -
22

22 Here are the three areas between the 0 braces.

22 1. A function will usually have a need to have local parameters and
22 variables defined in order to do its job in the program. The

- 22 function's declaration section within the braces is where these
22 declarations take place.
22.

22 2. Following the local declarations is the function's executable state-
22 ments. These are the statements to be executed by the function prior
22 to returning control to the calling function.
22
22 3. The "return" statement is where you identify the variable that is
22 to be passed back to the calling function. The "return" statement
22 can be a bit confusing. There are three forms in which the statement
22 can appear.
23B:405
2lFrame 405 T
22 $ Functions Continued -
22
22 The most common form of "return" is: return(expression);
2) 2

22 The "expression" can be any valid expression, such as value $ 2
22 or just value . In either case the final value will be passed
22 back to the calling function as the value of the function-name.
22 Remember, it is an intpger unless explicitly declared otherwise.
S22
22 Another form of the "return" is: return expression;

22 The elimination of the parentheses also eliminates the confusion
22 of whether or not "return" is a function (which it isn't).

C- 13

. **,.



23B:410
2lFrame 410 T
22 Functions Continued *

22 The last valid form of "return" is: return;
22

22 This case has the same effect as leaving out the return statement. V
22
22 In either case, no value is returned to the calling function and
22 only global variables used by the function would be changed as a
22 result of the called function being executed.
22
22 Important Note: ** Do Not Use ==> returno; as this will cause
22 a compile error since "return" is not a function.
22 ;''.22

22 We only have one short area left to cover. But first a question.
* 238:415

2lFrame 415 OM
22Which of the following is "not" a valid return statement?
23A return(expression);

23B return expression;
23""

23C+ returno;
2 3

23D return;
24 Very good!
24 B:420-
25ABD Wrong. That is a valid return statement. "C" is the invalid one.
25 B:420
25E "E" was not a given choice. Please try again.
25 B:415
21Frame 420 T
22 $$$ Main Program Driver $,'
22
22 This area of the program is usually located at the end of the source
22 program file. It is the required function that starts and ends the
22 programs execution. There must be a function by the name of main()
22 somewhere in your C program.
22

22 The organization of the function "maino" is the same as for the
22 functions we just covered. I bet that makes you happy!
2) 2

22
22 Well that about does it for this topic. Let's take one more look
22 at the overall construction of a typical C program before returning
22 to the topic menu.
23B:425
2lFrame 425 T
22 $** Review of C Program Organization *.
22

C.,-
.LA.' - . ,% " "% " " """ ." "% % % % "% "

"_ ._]_ .. . . . . ,."" """;"""" " '"-" -", '. _ . _ _,lm/ - - _.'_ . _._ ' ' ' 4[' . ' _ ' - lC. - 1 4' : -' .w , ; ,_.. ,.



22 The organization of the program file would look like the following:
22
22
22 1. Preprocessor Statements Section
22
22 2. Global Variable Declarations Section

22 3. Function(s)

22 4. Main Program Driver
22

22 *$This concludes this topic area. *
23END
3lFrame 500 T C PROGRAM ENVIRONMENT
32 This topic will discuss the overall C programming environment.

32 We will follow the complete process of creating a C program from the
32 writing of code to the execution of the resultant executable program.

32

32 To get us started let's take a look at the process as a whole.
32 The following is an outline of the steps we will cover:

* 32
*32 1. Create Source File

32 2. Compile Source File
32 3. Error Correction
32 4. Link Object Code Files
32 5. Run Executable Code File

* 32
32 Let's get started ...

33B: 505
3lFrame 505 T
32 ~$Create Source File *

*32 The most important aspect of computer programming in any language is
32 the ability to put your thoughts into computer code. Many experienced
32 programmers feel that the best way to write clear, concise, effective
32 code is to write in plain english "what" it is that needs to be done.L
'-24

32 Once the "what" has been identified you can start working on the "how"
32 do I do it question. This brings us to a controversial topic, that of

*32 where can I do my best program development? Do I do it on paper, or
*32 do I sit at a computer terminal and "create" as I go. Well it all

32 depends on who you talk to as to which way is better, but the personL
32 who wrote the program your using now perfers to "create" his programs
32 at the computer terminal. Of course it is not always up to you where

* - 3 you do you programming. Computer time costs money after all, and you
*32 and/or your boss should be concerned about such factors.

33B: 510

C -15



3lFrame 510 T
*32 *Create Source File Continued

32
32 Whichever way you finally decide to do it, you are going to need a
32 way to put the code you have written into a source file for use on
32 the computer. This calls for the use of a text editor. The more

-. 32 familijar you are with the text editor the easier and faster you can
*32 input your code into a source file. Remember, chances are you will

32 have to make error corrections or update your program at some point.
N2

*32 So! learn your text editor and use it often.
* 32

32 Once you have created your C program source file using a text editor,
32 it is time to compile it.

33B:515
31Frame 515 T
32 M* Compile Source File *

* 32
*32 At this point in our C program development we have one source file.

32 The next step is to translate the "source code" in the source file
32 into "object code" in an object file. This translation is accom-

2 plished by the C compiler.

The C compiler is actually a program that performs three basic
32 functions using three distinct programs.

O 32 1. The C Preprocessor *

32 ' ~
* 32 2. The C Compiler

32 3. The C Assembler
73B8-520
3l1Frame 520 OP

*32The C compiler is actually three programs in one. (True or False).

* 34 That's right. A preprocessor, compiler, and assembler all in one.
34 B:525
35 No. Are You Sure you read that last frame? Let's see it again.
3 5 B:515
3lFrame 525 T

32 $Compile Source File Continued

32~ First, the C "preprocessor" scans the source code for preprocessor
32 statements (# statements) and preforms all indicated actions.
32

S Second, the C "compiler" translates the C language statements into
32 computer assembly language statements.

32 Last, the C "assembler" translates the assembly language statements
32 into the object code and places it in an object file.
32

C 16



%-

, 32 This last step occurs IF you have not made any C syntax errors!
33B:530
31Frame 530 T
32 *$ Error Corection $$
32
32 When you compile your C program, it is possible that you may have
32 made one or two syntax errors. Don't feel bad, it can happen to
32 even the best programmer (once in a while). If this unfortunate
32 occurence takes place, you can rest assured that the C compiler
32 will let you know.
32
32 The C compiler will report any syntax errors that it encounters
32 while compiling your source code. In order to achieve the goal
32 of syntax error free object code, it may be necessary to go through
32 several iterations of "compile & correct".

32 This process will require changes to your source file, which is
32 a reason why you should know how to use your text editor program
32 inside and out.
33B: 535
3lFrame 535 T
32 * Link Object Code Files **32 '"

32 Once you have successfully produced an "object code" file, it is time
32 to move on to creating an executable program file.

32 The C "linker" is a program that is used to link together object files
-32 into an executable "machine code" file. The C linker will take all L
32 specified object files as well as any needed C library functions
32 and create for you one executable program file.

32 This feature allows for the creation of user functions that can be
32 used in a variety of programs by mearly linking them into the new
32 program. These functions can then be called by the program when
32 needed. This will save you many hours of redundant work.
32

32 What now' You ask. Well you'll see, but first a question.
33B:540

31Frame 540 GM
32Which one of the following programs will create an executable program file
32from one or more object files?
37A Compiler

33B Chainer

3'C Linker

*3 3D Preprocessor

33E Assembler
34 Correct. "
34 P:545

C 17

MEMW-9-



*..- * - ',k .rv- 'w, - ''.. : . . , -. ; .:-....- .. . *..- -: - - - - -- -- ;,

35ABCE Wrong. The "Linker" creates the "executable" machine code program file.
35 B:545
3lFrame 545 T

32 $** Run Executable Code File **
32 i'%
32 Now that you have the executable program file you can sit back and
32 start the seemingly long process of "logic" testing your program.

32 That's right! It's run time!

32 At this point, all syntax errors have been corrected and you have
32 successfully created an executable program file. Now you can test
32 your program to your heart's content and make all those changes
32 and/or enhancements to your pride-and-joy (your C program).

32 Before I return you to the topic selection menu, I would like to
32 give you a picture of the process described in this topic area.
32 I made no mention of "how" to do the steps only "what" steps needed
32 to be done. The commands to "compile" and "link" differ from system
32 to system, but are similar enough to show an example.
33B:550

31Frame 550 T
3 2 $** C Environment Example *.

32 The following is an example of the steps needed to create and run
32 an executable program file.

32 1. Create Source File ........--- progname.c (using a text editor)

32 2. Compile Source File .......-"-cc progname.c (using C Compiler)

32) 3. Error Correction ..........--- (As needed) (using a text editor)
32

32 4. Link Object Code Files clink progname (using C Linker)

32 5. Run Executable Code File progname (type program name)

32 6. Refine Program Execution ==, (As needed) (using a text editor)
Z3END
41Frame 700 T YOUR FIRST C PROGRAM
42 This topic will develop an actual working C program for you to examine.
42
42 In order to provide a problem solving structure, here is an outline
42 of the steps that I will be discussing:
42
42 1. Problem Definition
4 2
42 2. English Language Problem Solution
42
42 7. English Language - C Language Translation
42

C -16

,,_". . . . .-' _-.. . . . . ... -_ _. -- -.: .- -- e"-.-'. '-.. _._-- --- ... '.-*'_:. *.... *. la*':- .'- . i° _'. C9o"- .'<,. ,,° Z_% * . ,,-..._. ' "..__



42 4. C Language Problem Solution ..

43B:'705 .
41Frame 705 T
42 $$ Problem Definition $$*
42
42 The first thing that needs to be done is to define the problem.
42
42
42 The program I want to develop is one that will:

42
42 1. Take a one line input from the keyboard, and
42
42 2. Display the input line "centered" on the terminal screen.
42
42
42 I will show one way to accomplish this and then allow you to choose
4'- whether you want to view an alternate solution.
43B: 710
41Frame 710 T
42 $** English Language Problem Solution $,
42.
42 After thinking out the problem, I arrived at the following five step
42 solution:
42
42 1. Define and initialize the storage area for one line of input.
42
42 2. Prompt user for one line of input.

.• 42
42 :. Read in the one line of input keeping track of number of
42 characters read.42 .,-42 4. Calculate number of spaces to precede line for "centered" output.
42

42 5. Print out the input line "centered" on screen.
43B:715

41Frame 715 T
42 $ English Language - C Language Translation $•.
42
42 Changing the english problem solution into C language statements we get:
42
42 1. #define CHARIN 80
42 char input line[CHARIN];
42 for (i=O. i < CHARIN; i++)

42 inputlirte[i =
42 2. printf("\nPlease enter one (1) line of text to be centered.\n");
42 3. while ((c = getcharo) I= '\n') C t
42 input-lineli] = c;
42 i++; .

42 4. advance = (40 - (i / 2));
4 2 5. for (ival=Oi ival < advance; ival++)
42 putchar(' ');

42 printf ("%s", input_line);

C- 19

H:'



"-77-

43: -720
41Frame 720 T
42 *$$ C Language Problem Solution $$_
42
42 Now that we have the C statements needed for problem solution, all '.
42 we need to do is declare the variables we used and put the code
42 into a function called "main".
42
42
42 The following topic frame gives one complete solution.
438: 725
4lFrame 725 T
42 #define CHARIN 80
42
42 main() -

42 char c, input_line[CHARIN]:
42 int i, ival. advance;
42
42 for (i=O; i < CHARIN; i++)
42 inputline =
42 printf("\nPlease enter one (1) line of text to be centered.\n");
42 i = 0;
42 while ((c = getcharo) '\n') t
42 inputline[i) = c;
42 i++: }
42 advance = (40- (i / 2));
42 for (ival=0; ival < advance; ival++)
42 putchar(" ' )
42 printf("%s",input_line); 
43B:730
41Frame 730 T
42 At this stage of the course, I don't feel that I should take the time
42 to explain each C statement used in this example program. Please rest
42 assured that I plan to explain all the statements used here as well as
42 a multitude of others later in this course.
42
42 The example solution is by no means the only solution to the stated
42 problem. it is only one of many "correct" solutions. It also is not
42 a fool proof solution (Input of " 80 characters is not checked for.).
42
42
42 The rest of this topic area contains an alternate solution to this
42 same problem. Other C statements are shown, but again no explanation
42 is given.
43B:735
41Frame 735 OP
42Do you wish to see another example solution? (Yes or No)
43Y 

.-44 Great' Let's take a look at one.
44 B:740
45 Alright. I will honor your decision.
45 B:780

C -2

*. . .. . . . . . . . . . . . . . . .- * *.



41Frame 740 T
. - 42 *$S Alternate Solution M$

- 42
42 In the solution we just finished with, the whole solution was con-

42 tained in the "main" function. This practice is not a good one to
42 get in the habit of. A better way to solve programming problems
42 is to break the problem solution into small "modules" or, in the .".

42 case of C, functions.
42
42 Eariler I identified several steps to be accomplished in order to
42 solve the example problem. Each main step could be done by its own

42 seperate function or we could combine two or more steps into one

42 function. Let's see what we end up with if we use this latter

42 approach.
43B:745 -
41Frame 745 T
42ra Alternate Solution Continued "

42'
42 The first step was "Define and initialize the storage area for one
42 line of input."
42
42 This of course can be accomplished using a global variable called

42 "CHARIN" having value 80, an array declaration in function "main"
42 of the form: char input line[CHARIN], and a statement that "blanks"

42 out the array using a "for" statement for control.
* 42

42 These three statements look like the following:
P 42

42 (1) (2) (3)
42
42 #define CHARIN 80 char input Iine[CHARIN]; : for (i=O; i < 80; i++)
42 input line[i] = '

43B:750
41Frame 750 T
42 The second step of "Prompt user for one line of input" and the third

42 step of "Read in the one line of input keeping track of number of

42 characters read" can be combined into one.
42
42 For this we can define a function called "task1" that would look like: -"

42
42 task1(input line, i)
42 char input-line[];

42 int i,
42 { char c;
42
42 printf("\nPlease enter one (1) line of text to be centered.\n");
42 while ((c = getcharo) '\n')
42 C inputlineci= c:
* 42 i++; ,

" 42 return(i); I
438: 755

C - 21

* . . .. *.-.*.*• o*.|



41Frame 755 T
42 The fourth step of "Calculate number of spaces to precede line for

42 'centered' output" and the fifth step of "Print out the input line
42 'centered' on screen" can be combined into one. £
42
42 For this we can define a function called "task2" that would look like: ,--S
42
42 task2(input line, i) %

42 char input line[];
42 int i;
42 int advance, ival;
42
42 advance = (40 - (i / 2));
42 for (ival=O; ival < advance; ival++)

42 putchar(' '1;
42 printf("%s",input line); I .
43B: 760"
4lFrame 760 T
42 That just leaves one function to write. That being function "main".
42
42 1 will show two different "main" functions that do the same thing.
42
42 main() main()
42 ( { "

42 char inputline[CHARIN]; char inputline[CHARIN];
42 int i; int i;
42

* . 42 for (i=O; i < CHARIN; i++) for (i=O; i < CHARIN; i++)

42 input lineli] ' '; input _linei] = ',

42 i = 0; i = 0;
42 i = taskl(input_line, i); 1 task2(input_line, taskl(input_line, i);
42 task2(inputline, i); .
42 33-
43B: 765
41Frame 765 T
42 M$* A Variation To The Problem S '

42
42 Now that we have solved the example problem two different ways, how
42 about making a slight improvement to it. What if we wanted to clear

42 the screen before we displayed the "centered" line on the screen?
42
42 Well, this can be done fairly easily with the following function:
42
42 task3()
42 C
42 putchar('\033'); L
42 putchar('H');
42 putchar (' \033');-
42 putchar('J-');
42
42 Now all we need to do is call "task3" from "task2" before the -
42 loop that does the "putchar(' ')".

C 2' '-2

.:, .. . . . ... ,



43B: 770
4lFrame 770 T

" 42 This is what the "task2" function would then look like:

42
42 task2(inputline, i)
42 char inputjlineI; -

42 int i:
42 int advance, ival;
42
42 advance (40 - (i / 2));
42 task3);
42 for (ival=O; ival < advance; ival++)
42 putchar(' ');

42 printf("%s",inputline); I

42
42 Of course, "task3" would be located ahead of "task2" in the program
42 source file.
43B:775
41Frame 775 T
42 Let's see what our program source file would look like if we use
42 this alternate program solution with the "clear screen" function.

42
42 #define CHARIN 80
42
42 +--> task()
42
42 +---- > +--- task2(input line, i)

06- 42
42 +------ task1(input line, i)
42
42 +------- main
42
42 The way to read this is: "main" calls "task!", then "main" calls
42 "task2", then "task2" calls "task3".
43: 780
4lFrame 780 T
42 $ Lesson One Summary -

42
42 Well, that about does it for lesson number one. If you have seen the

42 four subject topics in this lesson, you should now be ready to take

42 the final test. If you feel that you don't understand something well
42 enough to pass the test, please retake the topic that is giving you
42 problems.

42
42 Topic 1 gave an introduction to the C CAI course structure.
42
42 Topic 2 gave a description of the C program organization.
42
42 Topic '. gave a description of the C program environment.
42
42 Topic 4 presented a programming example for your inspection. :'-

C- 23

2 

. ...



42
42 Good Luck on the test.
43END
51Frame 900 TT TEST OVER LESSON I
52 Welcome to the final test of lesson one. This test consists of ten
52 questions over material presented in the previous four topic areas.
52
52 In order to successfully complete this lesson, you must achieve a
52 minimum score of 70% (seven out of ten questions correct).
52
52 If you miss a question, the correct answer will not be shown. It is '--
52 up to you to research the correct answer.
52ecrs

52 Well, enough said. Let's get on with it. Good luck!
53B:905
51Frame 905 QM
521. After answering a test question in this course, a reference is shown
52to you so that you can find the place in the lesson where the question
52originated. The reference is in the format of (#,@) where ...
53A # = lesson number and @ = frame number
53
53B+ # = lesson topic number and @ = topic frame number
53-
53C # = lesson topic number and @ lesson line number
53
53D # = lesson number and @ = lesson topic number
54 Right. (1,135)

LOP- 54 B:910
55ACD Wrong. (1,135)
55 B:910
55E "E" was not one of your choices.
55 8:905
51Frame 910 OP
522. The three capabilities of the C preprocessor are: file inclusion,
52token substitution, and conditional compilation. (True or False)
53Y
54 Right. (2,305)
54 B:915
55 Wrong. (2,305)
55 B:915
51Frame 915 QM
523. Which of the following is a valid C preprocessor "token subtitution"
52statement?
53A+ #define interest .09
53 2

53B #declare interest .09
53 °

53C #defne interest = 09

53D *declare interest = .09
54 Right. (2,315) -
54 B: 920 r

C -24

. . . , . o- o I... 3. p, ii' o . . . .* *. * . , -;.-*. :. . -*. * .



55BCD Wrong. (2,315)
55 B:920
55E "E" was not one of your choices.
55 B:915
5Frame 920 OM
524. Which of the following is "not" a valid C preprocessor "conditional
52compilation" statement?
53A #if53 k_
53B #ifdef
53

53C #else
53-

53D+ #f or
53
53E #ifndef
54 Right. (2,320)

54 B:925
55ABCE Wrong. (2,320)
55 B:925
51Frame 925 UP
525. The function name in a function declaration can consist of any
52combination of letter, digits, or characters on the keyboard.
52(True or False)
53N
54 Right. (2,355)

LO 54 B:930
55 Wrong. (2,355)
55 B:930
51Frame 930 OM
526. Which of the following is the required function in a C program that
52usually starts and ends execution of the program?
53A start()" 53 -
53B begin()

53C+ main()
53
53D driver()
54 Right. (29320)
54 B:935
55ABD Wrong. (21. 32.0
55 B:935
55E "E" was not one of your choices.
55 B:930
51Frame 935 UM
527. Which of the following is a list of the three programs contained in
52the C compiler?
53A Preprocessor, Compiler, Linker

53 r
53B+ Preprocessor, Compiler, and Assembler

C 2
• C-2.

................... , " . .*"*.



777 - .1: 77 7.. "M q T

53

53C Compiler, Assembler, and Linker
53
53D Editor, Preprocessor, Assembler
54 Right. (3,515)
54 B:940
55ACD Wrong. (3,515)
55 B:940
55E "E" was not one of your choices.

* 55 B:935
* SiFrame 940 OP

528. The C "Linker" is a program that is used to link together one or more
52object files into an e>:ecutable "machine code" file. (True or False)
53Y
54 Right. (3,530)
54 B%945
55 Wrong. (3,530)

*55 B:945
5iFrame 945 OM'
529. Which of the following is a "Compiler" program that translates the
52C language statements into assembly language statements?
53A Editor

53B Preprocessor
53

S 53C+ Compiler,

* 53D Assembler

53E Linker
54 Right. (3,520)
54 B:950
55ABDE Wrong. (3,520)
55 B:950
51Frame 950 OM
5210. What is the first thing that needs to be done when solving a computer
52proqramm± ng problem?
53A+ Define the problem to be solved.
53-

538 Write the "english" language solution.
* 53

53C Do an "english" to "C" language translation.
53-

* 53D Write the "C" language solution.
54 Right. (4,700)

*54 B-.955
55BCD Wrong. (4,70)
55 :5
55E "1E"1 was not one of your choices.
55 Bi95O

C -26



LN~~~ ~ ~ ~ ~ '? .V%-- % -1R

51Frame 955 T
52 $ End of Lesson Material **
52

52 This marks the end of lesson number one. I hope that it was of some
52 benefit to you. I am looking forward to seeing you in lesson number
52 two. I hope that you didn't have too much trouble with the material
52 presented in this lesson. If you did, please voice your comments to
52 your training monitor who will in turn contact the CAI Plans Branch
52 at Keesler AFB, MS.
52
52 Well, let's take a look at how you did with the test ...

53END

G 27

•-...



•. -A. -

File "LESSON2"

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE
# WW WW WW EE LL cc 00 00 MMM MMM EE

# WWWW WW EEEEE LL CC 00 00 MMMM MM EEEEE
# WWW WWW EE LL CC 00 00 MMMM MM EE %
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

# TTTTTTTTTT 00000000
# TT 00 00
# TT 00 00
# TT 00 00
# TT 00000000
#

# LL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 22222
# LL EEEEEEEE SSS SSS SSS SSS 00000000 NNN NN 2222222

# LL EE SSS SSS 00 00 NNNN NN 2222222
# LL EEEEE SSSS SSSS 00 00 NN NN NN 222
# LL EEEEE SSSS SSSS 00 00 NN NN NN 222
# LL EE SSS SSS 00 00 NN NNNN 22
# LLLLLLLL EEEEEEEE SSS SSS SSS SSS 00000000 NN NNN 22222222
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 22222222

# THE LESSON YOU ARE ABOUT TO TAKE CONTAINS INFORMATION ON VARIABLES,
# CONSTANTS, OPERATORS. AND EXPRESSIONS USED IN C PROGRAMMING.

## THE LESSON CURRENTLY CONSISTS OF FIVE TOPICS.

# The Lesson Breakdown Is As Follows:
#

# Topic I: Variables & Constants I - This topic is the first of two that
# covers the declaration and use of variables and constants in
# C programming. (Approx. time = 10 min.)

# Topic 2: Variables & Constants II - This topic is the second of two that
# covers the declaration and use of variables and constants in C
# programmina. (Approx. time 5 min.)

# Topic 3: Operators & Expressions I - This topic is the first of two that . .
# covers the use of the different operators and expressions in
# C programming. (Approx. time 15 min.)

# Lesson Breakdown Continued:

# Topic 4: Operators & Expressions II - This topic is the second of two that
# covers the use of the different operators and expressions in C
# programming. (Approx. time 10 min.)

C - 28



#Topic 5: Lesson 2 Test -This is the lesson test over items that have

# been presented in the previous four lesson topics.
# (Approx. time =5 min.)

#

# TOTAL LESSON TIME IS APPROXIMATELY 45 MINUTES.

#

# I hope that you enjoy it!

$ SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING:

S STATUS TOPIC # TOPIC TITLE

@I Variables & Constants I

@2 Variables & Constants II*

@ 3 prtr xrsin

00 @ Operators & Expressions I11

@ Test Over Lesson 2*

$ NOTE: A "STATUS" OF " INDICATES TOPIC SUCCESSFULLY COMPLETED.

llFrame 100 T VARIABLES & CONSTANTS I
12 **Data Types *

* 12 In C there are four sets of basic data types that can be Used.
12 These four are: Character, Integer, Floating point, and Double-1...
12 precision floating point.
12
12 We will cover the character and integer data types in this topic area,
12 and leave floating point and double-precision floating point for the
12 next topic area.
I12
12 I will be discussing the declaration and use of both variables and
12 constants within the context of data type useaqe.
12
12 The flow of this topic area will follow the following outline:

12 1. Character Constants 3. Integer Constants
12 2.Character Variables 4. Integer Variables

C 2 29



13B: 105
S llFrame 105 T
12 *$ Variable Names MS
12
12 Before we get too far into this area, we need to set up some rules
12 for naming any variables that we use in our programming.

12 1. Variable names must begin with a letter.

12 2. Variable names are composed of letters and digits.

12 3. Variable names must not be C keywords.
12
12 In C. a "letter is any character in the set (a. .z,A..Z,_,, that's
12 all lower and upper case letters as well as the "underline" character.
12 A "digit" is any character in the set (0..93. A "keyword" is any word
12 in the set: .

12
12 (auto, break, case, char, continue, default, do, double, else, entry,
12 extern, float, for, goto, if, int, long, register, return, short,
12 sizeof, static, struct, switch, typedef, union, unsigned, while)13B': 110 "":

liFrame 110 T
12 $ Variable Names Continued *
12
12 A few additional facts need to be mentioned about variable names.
12
12 1. Upper and lower case names are different. This means that the
12 variable names: answer, Answer, and ANSWER are all different
12 variable names.
12
12 2. Only the first eight characters of a variable name are significant.
12 This means that insert Al and insertA2 are the same variable name.
12
12 3. The number of significant characters may be less than eight for
12 external variables and function names (system dependent).
13B:115
llFrame 115 QM
12Which of the following is "not" a valid variable name?

13A X12
13
13B first num
13
13C+ 2nd in line

13D _OUT_
14 Very good!
14 B: 120
15ABD No. The correct answer is "C". Variable names must start with a letter.
15 B: 120
15E I'm sorry, "E" was not one of your choices.
15 B:115
1lFrame 120 T
12 ** Character Constants **"

S- *30

. .. . . . . . . .... .. .._" " " " - " " - " .. . . . . . . . . . . . . .... . .." ' ' " " "" " ". . . . ." "". . .- - "." "-.'." "



7-7' ~ v -- - -7 _J -2 . -- -s -. - ..

12

12 A character constant is symbolized as a sinale character enclosed
12 within single quotation marks.

12
12 For example: 'a'

" 12

J'7 The value of a character constant is actually the numeric equivalent
12 of the character as defined by the computer system's character set.
12 Thus, arithmetic operations usinq characters is possible but the most
12 common use for character constants is for comparitive purposes.

* 12
*12 All this may seem confusing, but it really isn't. We will look at an

12 example of the useage of character constants after we take a look at
12 character variables.
13B: 125
llFrame 125 T
12 *$$ Character Variables $,

* 12
12 A character variable is declared by the use of the keyword: char
12
12 For example: char inchar;
12
12 The character variable "in char" will now be assigned a one byte
12 storage location in the computer's memory. The value that will
12 be stored in this location depends on the useage of the variable
12 in the program. Let's look at a couple examples that should help
12 you understand both character variables as well as character con-

CO 12 stants.
*12.--"

12 The statement: in char ' a'; assiqns the ASCII value 97 (decimal)
1 ,  to the character variable location identified by "in char" in memory.
12 Note: ASCII values range from 0 thru 127 (decimal) and can be found
12 in most good proqramminq books.
13B: 130
1lFrame 130 T
12 * Character Variables Continued

12 Every character on the keyboard has an ASCII numeric equivalent.
12 (By the way, ASCII stands for American Standard Code for Information
12 Interchange.) There are, however, several characters that are hidden.
12 These characters can be represented by character constants by using
12 character escape sequences that start with a backslash (\).
12
12 Some of the more common character escape sequences follow:
12

12 %b (backspace) L
12 \n Cnew line)
12 \+f (form feed)
12 ,r (carriage return)
12 \\ (backslash)
12 (single quotation)
12 ,### (### an octal value) r

.. .• . . -



13B: 135
SlFrame 135 T
12 Character Variables Continued -
12 .-.
12 An example of how you would declare a character variable using one of
12 the special character escape sequences as a character constant is as
12 follows:

12 4"

12 char back-space = "\b';
12
12 This statement assigns the ASCII value 8 (decimal) to the character
12 variable location identified by "backspace" in memory.

12 An equivalent way to declare the variable "back space" is as follows:
12
12 char backspace = '\010'; OR char backspace = '\10';
12
12 In both statements, the character variable location "back space" is
12 assigned the value 10 (octal) which is equivalent to 8 (decimal).
13B: 140
lFrame 140 OP
121n the statement: char inputchar ='t';

12input char is called a character variable and 't' is called a
12character constant. (True or False)
173Y
14 That's right.
14 B:145
15 Wrong. That is a true statement.
15 B:145
IFrame 145 QM
12Which one of the following characters is used to identify a special character
12escape sequence?
13A $

- 13
13D '

13

13E #
14 Very good, you're so right.
14 B:150
15ABCE No. Answer "D" is the correct answer.
15 8:150

- 1lFrame 150 T
12 *$$ Character Constants and Variables Summary M'"
12

12 So far in this topic area you have seen rules over selecting variable
12 names, a description and examples of character constants, a description

*. 12 an examples of character variables, and a description and examples of

C ~
- . .-*". .. ° - .4 ., *.



' * L. -".-

12 how to declare special characters.
12
12 In the remainder of this topic area we will look at integer constants
12 and integer variables.
12
12 So let's get to it ...
13B:155

'. 11Frame 155 T
1" * Integer Size *
12

12 The first thing we need to cover when talking about integers is the
12 size of a number that can be used. In C we can normally use integers12' in the range: -32,768 thru +32,767
12 range:

12 If it is necessary to use a number outside this range, C provides a
12 way to accomplish this.

12' The use of an "unsigned" integer provides for use of numbers in the
12 range: 0 thru 65,535
12
12 The use of a "long" integer will provide for use of numbers in the
12 range: -2,000,000,000 thru +29000,000,000

12
. 12 The way to identify which size you are using will be explained.

13B: 160
1lFrame 160 T
12 * Integer Constants *-*

L12
12 An integer constant can be expressed in one of three ways. It can
12 be decimal! octal, or hexadecimal. Also, each of these can be either
12 a "short" or "long" integer.
12 -

12 Decimal integer constants are represented by such numbers as: 238,
12 45920., and -72. Note that embedded commas are not used. 45,920
12 would be wrong.*12 ?

12 Octal integer constants are represented by such numbers as: 089, 0150,
12 and 014. Note that "octal" numbers all have a leading "zero".

12 Hexadecimal integer constants are represented by such numbers as: Ox8F
12 ox9f, OX2A, and Ox7b. Note that lower case and upper case can be used
12 and "hexadecimal" numbers all have a leading "zero x".
138:165
lFrame 165 T
12 * Integer Constants Continued "
12
12 .As I mentioned, integer constants can also be either a "short" or
12 "long" integer. An integer will be stored as a "short" integer unless
12 you indicate otherwise. There is, of course, exceptions to the rule. . "

12 For example, if you specify an integer that is larger than 32767, then
12 it will be stored as a long integer. r

T 12

C -33 Z.



12 The way to indicate that an integer is to be stored as a "long" integer
12 is to follow the number with the letter "L". Here are a few examples.
12
12 Decimal: 5987L, and 367L
12 Octal: 04689L, and 0824L
12 Hexadecimal: OX2ASF4L, and Ox6FDAL
12
12 Note: A lowercase letter "1" may be used, but may be very confusing.
13B:170
llFrame 170 GM-..
12Which of the following best describes the integer constant 073564L ?

13A Decimal•"-.
13 " '

13B Long Decimal

13C Octal L.
I
13D+ Long Octal

13E Hexadecimal
14 Right.
14 B:175
15AE No. The "0" (zero) in front makes it an "octal" and the "L" makes it a
15 "long" integer. I think you need to review this material.
15 B: 160
15B No. The "0" (zero) in front makes it an "octal" number.
15 B:175LO 15C No. The "L" after the number makes it a "long" octal number.

15 B:175
1lFrame 175 T
12 *8* Integer Variables *.-

12 An integer variable is declared by the use of the keyword: int

1-) For example: int index:

12
12 The integer variable index will now be assigned a 1b bit storage
12 location in the computer's memory.
12
12 Let's look at a couple examples that should help you understand
12 both integer variables as well as integer constants.
12

12 The statement: number in = 2121; assigns the integer constant value
12 212 (decimal) to the integer variable location identified by "number in"
12 in memory.
I 3B:180
lFrame 180 T
12 * Integer Variables Continued *

12 When declaring an integer variable, you have the option of specifing
12 whether the variable is to be a "short", "long", or "unsigned" variable.
12 3

...........................................-. . ... ... .... ...

* ....-. . -.. . -***%** *. .o* ."....



12 The way to indicate which of these an integer variable will be is by
12 using the keywords short, long, or unsigned. Here are some examples:
12
12 short int index_; ----- > Or Just ----- > short index 1;
12
12 long int index 2; ----- > Or Just ----- > long index 2;
12
12 unsigned mt index_3; ----- > Or Just ----- > unsigned index 3;
12
12 Note: When using these keywords, use of "int" is optional.
138: 185
liFrame 185 OP
12ten declaring an integer variable, you only have the option of specifing
12the variable as being either "short" or "long". (True or False)
1 3N
14 That's right. You can also specify it as being "unsigned".
14 B:190
15 Wrong. You can also specify it as being "unsigned".
15 B:190
l1Frame 190 T
12 $ Integer Variables Continued $
12
12 One last word on integers.
12
12 Although C has the capability of specifing different size storage
12 locations, this capability is limited by the specific compiler and
12 system you are using. Please check to see if your compiler and
12 system treat integers as described here.
13B: 195
llFrame 195 T
12 $n Topic Summary $$$

*~ 12
12 In this topic area we have looked at a description and examples of

II 12 character constants, character variables, integer constants, and
12 integer variables. Also we covered variable names and special
12 characters.

12 In the next topic area we will continue to discuss constants and
12 variables by looking at floating point and double-precision float-
12 ing point data types.
12

12 $$* This concludes this topic area. $_
I-END
21Frame 300 T VARIABLES & CONSTANTS II
2 $** Data Types ME*

22 We learned in the last topic area that there are four basic data
22 types used in C. These four are: Character, Integer, Floating
22 point, and Double-precision floating point.
22,..

22 We covered the character and integer data types in the last topic area,

C :

::- b . . .<:-t.: .- - - .. " ' -- "- -- * ... " " "" -- - .- •" '-"



22 so we will cover floating point and double-precision floating point in
22 this topic area.-22
22 I will be discussing the declaration and use of both variables and
22 constants within the context of data type useage.
22
22 The flow of this topic area will follow the following outline:
22

227 1. Floating Point and Double-precision Floating Point Constants
22 2. Floating Point Double-precision Floating Point Variables
23B: 305
21Frame 305 T
22 *I Floating Point and Double-precision Floating Point Constants M-

22 Floating point numbers are just numbers that have two parts instead of
22 one, as in the case of an integer. You can think of a floating point .
22 number as having an integer, or whole part, and a fractional part.
422
22 These two parts are seperated by a decimal point.

22 Examples of floating point numbers: 67.32, 2583.1, and 2.4592
22
22 How "precise" a number is has an effect on calculations preformed using
22 a stored number. Thus, the precision of a number may be very important
22 within your program. C stores all floating point constants as double
22 precision. This means that a large number of significant digits are
22 stored to represent the number and hence, gives better precision in any

* 4. 22 calculations preformed involving the number.

23B: 310
21Frame 310 T
22 $ FP & DPFP Constants Continued .
4..

22 Another way of representing floating point numbers is through the use
22 of "scientific notation". The following are examples of the use of
22 scientific notation for floating point constants:
22-.-'

22 4.67E3 <or> 4.67e3 4670.0
22 .9834E2 = 98.34
22 345.0eb = 345000000.0
22 -2.8473E5 = -284730.0
22-'

22 4.67E-3 eor> 4.67e-3 = .00467
22 .9834E-2 = .009834
22 345.0e-6 = .000345
22 -2.8473E-5 = -.000028473

22 Note: The "E" can be upper or lower case ("e").
23B: 315
21Frame 315 QM
22Which of the following is "not" an example of a floating point constant?
23A 4670.0
23 3

•. . . .. . . . . . ..



--- ~----'--; ww '_ 1.7 V. -Z SI. t ~

23B .9834e-2
23
23C+ 34523

23D -2583. 1

23E -67.9E3
24 Correct.
24 B:320
25ABDE Wrong. Answer "C" is an "integer".
25 B:320
2lFrame 320 T
22 *$ Floating Point and Double-precision Floating Point Variables $
22
22 In C, floating point variables are declared using the keyword "float",
22 and double precision floating point numbers are declared using the
22 the keyword "double".

422
22 Here are some examples:22 .'
22 float var_1; , double var_1;
22 float var2 var_3; double var_2, var_3;
22 '..

22 The following illustrates the use of floating point constants and
22 variables.
22 "i'

22 float var 1 = 451.29 <or> float var 1 4.5129E2
22 double var_2 = 23975.5619 <or> double var_2 = 2.397535619e4 w
23B:325
21Frame 325 T
22 FP & DPFP Variables Continued *
22....

22 To reiterate, the use of "double" allows for the storing of a greater
22 number of significant digits to represent a given number. Thus, more
22 precision is gained in calculations involving the number.
22.

Another way of achieving the precision of a double precision variable
is with the keyword "long". The following two statements have the

2 same effect:
22
22 double varIf >>>'>> OR >>>>>> long float var 1;
23B: 330
21Frame 330 QP
221n the statement double vatnone = 419.9253; the keyword "double" is used
22to indicate that variable "var one" is to be stored as a "double precision
22floating point" number. (True or False)
23Y
24 Very good.
24 B: 335
25 No. That statement is true.
25 B:335
21Frame 335 T r

G 7-71-

.2. <- .



22- $ Topic Summary $ ;' "-'- 22"'"
22 In this topic area we have looked at a description and examples of
22 floating point and double precision floating point constants, and

22 floating point and double precision floating point variables.
22
22 In the next topic area we will begin a discussion of operators and
22 expressions and their use in C.
22
22
22 $ This concludes this topic area. "
23END
31Frame 500 T OPERATORS & EXPRESSIONS I
32 *$ Introduction *1*

32
32 In this and the next topic area we will be discussing operators and
32 their use in expressions.

32 This first topic area will cover the following:

32 1. Arithmetic Operators -"

32 2. Increment & Decrement Operators
32 3. Assignment Operators32 3

32 Let's get started ...
33B: 505
31Frame 505 T

32 $S$ Arithmetic Operators $*-

32 The arithmetic operators are represented by the following:
32
32 Addition (+), Subtraction (-), Multiplication ($), Division (/),
32 Modulus (%) and the Unary minus ().

32 The first four in this list are probably the most familiar to you so
32 1 will only give one example of their use in an expression.
32 <
32 Addition: a + b (adds b to a)
32
32 Subtraction: a - b (subtracts b from a)
32
32 Multiplication: a $ b (multiplies a by b)
32
32 Division: a / b (divides a by b)
33B:510

31Frame 510 T
32 $ Arithmetic Operators Continued -
32

- 32 The modulus operator can be used only with integer (int) data types.
32

-_ 32 The action preformed by this operator is one of returning the remainder

C 38--. . . . . . . . . .



".4.-

32 after a division operation. For example, in the statement:

32

32 divided by 2 is 7 with a remainder of 1. Likewise:

.32 Result = 150 . 15; produces a value of 0 in "Result", since 15 divides

32 150 evenly.
33B:515
31Frame 515 T
32 $ Arithmetic Operators Continued -

32 The unary minus operator is used to change the sign of the operand it

32 operates on.

32 The action preformed by this operator is one of returning the negative

32 of the value of the operand. For example, in the statement:
32 -

32 Answer -x value; the value stored in "Answer" would be the negative
32 of the value stored in "x _value". For instance:

32 If the value stored in "x _value" is 385, then the value stored in the
32 variable "Answer" would be -385. Likewise, if the value in "x value"
32 were -952, then "Answer" would contain the value 952.

32i

32 Note: C does not have a unary plus operator.

33B: 520
31Frame 520 GM

iA! 32Which of the following is the value that will be assigned to the variable
32"Answer" after execution of the statement: Answer = 27 % 12; ?
33A 2.•25 - '3 .33

C - .,"

33B+ 3--

33C 25 I

33 >.
331) 2 ""

4 Very good.
34 B:525
35ACD No. The modulus operator returns the "remainder" of "integer" division,
35 therefore answer "B" is correct.
35 B:525
35E I'm sorry, "E" was not one of your choices.
35 B:520
31Frame 525 T
32 $** Increment & Decrement Operators $
32
32 The increment and decrement operators are represented by the following:"-.-

32 Increment (++) and Decrement (--)

32 These two operators can be used in either "prefix" or "postfix" r

:2 notation.

G 39

. . ....... ... . ...



32
32 "Prefix" notation results in the variable being incremented or decre-
32 mented before its value is taken. Whereas, "postfix" notation results
32 in taking the variable value before it is incremented or decremented.
32
32 Let's take a look at each of these operators and see how "prefix" and
32 "postfix" affects them.
33B:530
31Frame 530 T
32 $ Increment Operator $
32
32 In the statement: x value = x value + 1; the value of x value is
32 incremented by I and restored in the memory location identified by
32 the variable "x value". This is a valid statement in C, but C also
32 allows a shorthand way of doing the same thing. In this shorthand
32 notation, the statement would be written as x value++; Thus:
32
32 xvalue = xvalue + 1; and xvalue++; are equivalent statements.
32
32 The above example also demonstrates the use of "postfix" notation.
32 The same result could have been obtained by using "prefix" notation.
32 If you were to use the statement: ++xvalue; the stored value of
32 "x value" would have been incremented by 1 as it was using the other
32 two statements. Where's the difference then? Well, let's look at
32 another example and see if it becomes clearer.
33B:535

- 31Frame 535 T
32 * Increment Operator Continued *
32

32 If we assign the value of 10 to the variable "x value" using the
32 statement: x-value = 10; and then preform some arithmetic operation
32 using the variable "x value" and the increment operator, what would be
32 the result?_ 32

32 Well, it all depends on whether you use "prefix" or "postfix" notation.
32

" 32 If we preform the statement: Result = ++x value; then the value
32 stored in "Result" is 11, and "x value" is incremented to 11, but
32 if we preform the statement: Result = x value++; then the value
32 stored in "Result" is 10, and "xvalue" is incremented to It.
32

*32 As you can see, this can be confusing until you get used to the idea.
33B:540

- 3lFrame 540 UP
32The placement of the "increment" operator (either before or after the
32variable) has no effect on the outcome of statement execution.
32(True of false)
33N

S.34 Right.
- 34 B:545
* 35 Wrong. variable++ and ++variable will produce different results depending

35 on how and when they are used.

C - 4Q

P , , 0 1-.,->, .. ..: ...,.- ..:* *.-* -*.., . ,.. . . . .. . . -.- ,- **..-...., - .-.,, _ . _.-. > . . -, '. -,.-,- .,,. ,,,., -° ., , . , .. -. ,-.. •- . , . . ,-, , . .



,E..UU.-.. ."-A'.5.!_. .% _q . . . .. :" - "K _" .r. J.f l. lS JW _ r -. -._ . - .

35 B:545
31Frame 545 T
32 * Decrement Operator *
32
32 In the statement: yyvalue = y_value - 1; the value of y value is
32 decremented by I and restored in the memory location identified by
32 the variable "y value". This is a valid statement in C, but again
32 C has a shorthand way of doing the same thing. In this shorthand
32 notation, the statement would be written as yvalue--; Thus:
32
32 y-value = y-value - 1; and yvalue--; are equivalent statements.
32
32 The above example again demonstrates the use of "postfix" notation.
32 The same result could have been obtained by using "prefix" notation.
32 If you were to use the statement: --y value; the stored value of
32 "yvalue" would have been decremented by I as it was using the other
32 two statements. Let's again look at an example showing the difference
32 between using "prefix" and "postfix" notation.
33B:550
31Frame 550 T
32 * Decrement Operator Continued -
32
32 If we assign the value of 15 to the variable "yvalue" using the
32 statement: y value = 15; and then preform some arithmetic operation
32 using the variable "yvalue" and the decrement operator, what would be
32 the result?
32

Le 32 Well, again it all depends on whether you use "prefix" or Opostfix"
32 notation.

* 32
32 If we preform the statement: Answer - --y value; then the value
32 stored in "Answer" is 14, and "yyvalue" is decremented to 14, but
32 if we preform the statement: Answer = y.value--; then the value
32 stored in "Answer" is 15, and "yvalue" is decremented to 14.
S32
32 Remember: prefix - value taken second, postfix - value taken first.
33B:555
31Frame 555 GM'
32Which of the following represents the contents of variables "Answer" and
32"yvalue" after execution of the statement: Answer = 25 + (--yvalue);
32given the initial value of "yy value" is 10?
33A+ Answer = 16 and y value = 9
33
33B Answer = 15 and yvalue = 9 %%%,
33
33C Answer = 16 and yvalue = 10 L-

33D Answer = 15 and yvalue = 10
34 You are correct.
34 B:560
35BCD Wrong. Choice "A" is correct. .

35 B:560

C - 41



35E I'm sorry, "E" was not one of your choices.
35 B:555
31Frame 560 T
32 $*2 Assignment Operators $
32
32 The assignment operators are represented by the following:
32 i
32 Equal (=), and Operation equal (op=), where the "operation" is one of
32 the binary operators.
32
32 We have already seen how the first assignment operator is used.
32 As an example we have a statement such as: Answer = 25;

32 In this example, the equal assignment operator is used to place the
32 value of 25 in the memory location represented by the variable "Answer". 4

32 This assignment is done "right to left", so it is possible to make
32 several assignments using one statement. For example:
32
32 a val = b-val = cval = 0; will set all the named variables to zero.
33B:565 -31Frame 565 T '

32 $ Assignment Operators Continued $
32. . ,

32 The "operation equal" operators are really nothing more than a short-
32 hand method of writing a statement that involves doing some operation
32 on a variable and storing the result back into that variable's memory
32 location. For example, in the statement:

32 x _value = x value + 25; 25 is added to the value of x value and the . -.

32 result is stored in the memory location represented by x value.
32
32 C provides a way to accomplish this in a shorter statement (although
32 the one above is also valid). An equivalent C statement would be:
32
32 x value += 25;
32
32 All operations on the right will be done before the operation identi-

32 fied in front of the "=" sign.
33B:570
31Frame 570 T
32 Z Assignment Operators Continued .
32 '

32 That last statement is an important one. For example, in the statement
32.- "

32 aval *= b.val + cval; you will get a different result if the
32 statement were evaluated as: a val = (a-val * b-val) + cval;
32 To eliminate this problem, C will evaluate the statement according
32 to the following rule:
32
32 left-variable = (left-variable) "op" (right expression);

32 Our example will be evaluated as: a.val = (aval) S (b-val + c.val); -

C - 42

........................................ ..--



7W.-. V.

33B: 575
* --'. 31Frame 575 QP

32The result stored in "x value" after execution of the statement:

32x value -= 35 + 20; given an initial value for "x value" of 100,
32would be 45. (True or False)

*. 33Y
34 Right.
34 B:580
35 Worng.
35 B:580
31Frame 580 T
32 $SS Topic Summary M2*
32
32 In this topic area we have looked at a description and examples of
32 arithmetic, increment & decrement, and assignment operators.
32
32 In the next topic area we will continue our discussion of operators
32 and expressions and their use in C.
32
32
32 $$2 This concludes this topic area. *99
33END

*41Frame 700 T OPERATORS & EXPRESSIONS II
. 42 2$* Introduction 2*2

42
42 In this topic area we will be continue discussing the use of operators
42 in expressions that we started in the last topic area.
42
42 This second topic area on this subject will cover the following:
42
42 1. Relational Operators
42 2. Logical Operators
42 3. Bitwise Logical Operators
42 4. Negation Operator
42 5. Conditional Operator
42
42
42 Let's get started ...
43B: 705
41Frame 705 T
42 M$$ Relational Operators $$3
42
42 Relational operators are used within a program in order to compare
42 one or more data values. The relational operators are represented

*42 by the following:
42 L
42 Equality (==), Inequality (!=), Greater than (>), Greater than or
42 equal to 0=). Less than (<). and Less than or equal to (0=)."-1 42 <
42 Expressions involving these operators are evaluated as being either

* 42 "true" or "false". If an expression is "true" then the expression K
* 42 has a value of 1 (one), if it is "false" than the value is 0 (zero). -

C - 43



-42
-. 42 Let's take a look at an example to help make this clear.

-'" 43B:710 " 1
4lFrame 710 T
42 $ Relational Operators Continued -
42
42 For our example let's compare two variables:
42
42 var_1 >= var2 is an expression that has a value of either "true"
42 or "false". If var I is indeed greater than or equal to var_2, then ,.
42 the expression is "true" and has a value of 1 (one). Likewise, if
42 var is not greater than or equal to var_2, then the expression is
42 "false" and has a value of 0 (zero).
42
42 In order to give this evaluation meaning, it must be somehow used in
42 a valid C statement. An easy to understand example is: I.
42
42 var flag = (var_1 >= var 2);
42
42 "var_flag" will be assigned either 1 or 0 depending on the evaluation
42 of the expression: var I >= var 2
43B:71541Frame 715T

42 Relational Operators Continued $
* 42 .

42 The example we looked at was one in which a comparison was made between
42 two variables. This is not the only way to use the relational operators

i 42 as you can well imagine.
* 42

42 Some of the more common situations that relational operators are used
42 in include: comparing array values, checking for "end of file",
42 controlling function calls, and controlling statement execution.
42
42 Relational operators have a lower precedence than arithmetic operators,
42 and assignment operators have lower precedence than relational operators
42 thus, the statement: val one = val 2 ' val_3 - 5; will be evaluated
42 as: val _one = (val 2 1= (val 3 - 5)); The final value of either I or
42 0 will eventually be stored in the memory location represented by the
42 variable "val one".
43B:720
41Frame 720 GM
42Which of the following is "not" a relational operator?
43A =-

* 43
43B '=

43
43C "=
43
43D
43
43E+ ++"'
44 Right.

C -44

,1 -.* .°-



44 B: 725
45ABCD Wrong. That is one of the relational operators, choice "E" is not.
45 B:725
41Frame 725 T=
42 *$* Logical Operators *5*

* 42
42 Logical operators are also called logical connectives and they are
42 used to combine expressions being used for comparison. The logical
42 operators are represented by the following:
42
42 Logical AND (&&) and Logical OR (H1)
42
42 Expressions involving these operators are evaluated as being either
42 "true" or "false". If an expression is "true" then the expression
42 has a value of I (one), if it is "false" than the value is 0 (zero).
42
42 Let's take a look at an example.
43B: 730
4lFrame 730 T
42 S Logical Operators Continued f
42
42 In the expression: in char == 'y' H1 in-char == 'n', the value of the
42 expression can once again have a value of either 1 or 0 depending on
42 whether the expression is "true" or "false".
42
42 In order to give this evaluation meaning, it must be somehow used in
42 a valid C statement. An example is:
42
42 validresp = (in-char == 'y' in-char = n');
42
42 "validresp" will be assigned either I or 0 depending on the evaluation
42 of the expression: in char == 'y' H: in char == In'
42
42 In other words, valid_resp will be I if in char equals either y OR n,
42 or 0 if in char equals anything else.
43B:735
4lFrame 735 T
42 $ Logical Operators Continued -
42
42 Logical operators have a lower precedence than relational operators,
42 and assignment operators have lower precedence than logical operators .-

42 thus, the statement:
42
42 result val = val l < val_2 && val 3 val 4:
42
42 is evaluated as: result.val = ((val 1 < val 2) && (val3 val_4)).

42 e
42 The final value of either I or 0 will eventually be stored in the
42 memory location represented by the variable "result val".
43B:740
41Frame 740 OP r.

421n the statement: True-Response choice == 't' H1 choice 'T'; -

C - 45



42the value of "TrueResponse" will be set to I, only if both "choice 't."
42and "choice == 'T'" are true. (True or False)
43N
44 That's right. P
44 B:745
45 Wrong. Only one of the expressions has to be true when using the "OR"
45 logical operator.
45 B:745•%
4lFrame 745 T
42 MS* Bitwise Logical Operators M*I
42
42 The use of bitwise logical operators is beyond the scope of this
42 course. However, I feel that their existence should be mentioned.
42
42 Bitwise logical operators are represented by the following:
42

42 Bitwise AND: &
42 Bitwise inclusive OR:
42 Bitwise exclusive OR:
42 Left shift: <<
42 Right shift: >>
42 Unary one's complement:
43B:750
4lFrame 750 T
42 $$* Negation Operator $*
42
42 The negation operator is a unary NOT operator. It is used to convert
42 or reverse the value of the operand it appears in front of.
42
42 The exclamation point (M) is used for this operator.
42
42 For example, in the expression: !(val one < 30) if the value of the
42 inner expression is "true" then the value of the entire expression is .
42 "false", and vice versa.
42
42 The parentheses, in this case, are necessary since the negation oper-
42 ator has a hiqher precedence than relational operators.
42
42 A statement using the negation operator would look somethina like this:
42
42 control flag found flaq;
43B:755
41Frame 755 T
42 $*$ Conditional Operator $$

* 42
42 The conditional operator is what is called a "ternary" operator. .
42
42 What this means is that the operator acts upon three operands. The
42 effect it has is very similar to an "if-else" control statement.
42
42 The conditional operator is represented by a question mark and colon.
43B:760 r

C -. 46



wm VIZ w.-U

4lFrame 760 T
42 * Conditional Operator Continued * -

42
42 For example, in the statement:
42
42 new val = val I -1 ? new val = 25 • new val = 30:

* 42
42 The final value of "newval" depends on the value of "val 1". If

42 vall is equal to 1, then the expression "val 1 1== " is true and
42 the expression "new-val = 25" will be executed, else if "val I == I"

- 42 is false, then the expression "new val = 30" will be executed. The
42 value of new val will be stored in the memory location represented
42 by the variable "newval" because of the assignment operator ""

42 after the variable "new val" on the left side of the statement.
43B:765

41Frame 765 OP
421n the statement: vall = test val ? val_1 = I : val = 0;
42if test val equals 1, then the value of val I will be 1. (True or False)
43Y
44 Right.

44 B:770
45 Wrong. "val 1 = 1" would be executed, thus setting "val_1" equal to 1.
45 B:770

41Frame 770 T
42 $$$ Lesson Two Summary $$*
42
42 Well, that about does it for lesson number two. If you have seen the
42 four subject topics in this lesson, you should now be ready to take
42 the final test. If you feel that you don't understand something well
42 enough to pass the test, please retake the topic that is giving you
42 problems.
42
42 Topic # ------------------- Subject covered ----------------------
42
42 1 Character & interger constants and variables.
42
42 2 Real & double precision real constants and variables.
42
42 3 Arithmetic, increment & decrement, and assignment operators.
42
42 4 Relational, logical, negation, and conditional operators.
43END
51Frame 900 TT TEST OVER LESSON 2
52 Welcome to the final test of lesson two. This test consists of ten
52 questions over material presented in the previous four topic areas.
52

52 In order to successfully complete this lesson, you must achieve a
52 minimum score of 70% (seven out of ten questions correct).
52
52 If you miss a question, the correct answer will not be shown. It is

52 up to you to research the correct answer.
52

C 47

:- ~~~~~...-........ ...- '--........................... . ... :..... ... ,....... .... :.... . -. ::....... . <.:.... . '.. -."



52 Well, enough said. Let's get on with it. Good luck!
53B:905
5iFrame 905 OM

521. Which of the following is not a valid variable name?
53A xl1y2

* 53B+ int
53
5SC _IN_
53
53D var
54 Right. (1,105)

54 B:910
55ACD Wrong. (1,105)
55 B:910
55E "E" was not one of your choices.
558:905

5lSFrame 910 OP
522. A character constant is symbolized as a single character enclosed
5 2within sinqle quotation marks. (True or False)

* 53Y
54 Right. (1.120)

* 54 B:915
55 Wrong. (1,120)
55 B:915
5iFrame 915 OM
523. Which one of the following characters is used to identify a special
52character escape sequence?
53A #
53
53B +
53
53C+\

53D %1
54 Right. (1,130)
54 B:920
55ABD Wrong. (1,1:30)
55 B:920
55E "E" was not one of your choices.
55 B:915
5iFrame 920 OP

*524. In the statement: double var one =358.8204. the keyword "double" is
* S2used to indicate that variable "var _one" is to be doubled in value before

52being stored in the memory location represented by "var one".
52(True or False)
53N
54 Right. (2,315)

*54 B:925
55 Wrong. (2.315)
55 B:925
5lFrame 925 OM

C 48S



525. Which of the following is "not" an arithmetic operator?
53A +

538
53B

53C /
53
53D+ = t._

54 Right. (3,505)
54 B: 930

55ABC Wrong. (3.505)
55 B:930
55E "E" was not one of your choices.
55 B:925
51Frame 930 OM
526. Which of the following is the value that will be assigned to the variable
52"Answer" after execution of the statement: Answer = 22 % 5;
53A + 2 /
53 +.

53P 4.4
53"'

53C 4
53.

53D .4
54 Right. (3,510)
54 P:935
5SBCD Wrong. (3,510)U -55 B:935

55E "E" was not one of your choices.
55 B:930
5IFrame 935 QP
527. The placement of the "increment" (++) or decrement (--) operators, with
52respect to the variable they operate on, never has an effect on the outcome
52of statement execution.
53N
54 Right. (3,530 & 545)
54 B:940
55 Wrong. (3,530 & 545)
55 P: 940
51Frame 940 OP
528. The result stored in "Answer" after execution of the statement:
52Answer *= 10 + 10; given an initial value for "Answer" of 10,
52would be 220. (True or False) .

53N
54 Right. (3,555)
54 B:945
55 Wrong. (3.,555)
55 B:945
51Frame 945 OM
529. Which of the following is "not" a relational operator?
53A >= I.,"

53

C - 49

*.*.***,..*......*.., .,.7



538 <=
53
53C -

53D+ +=
54 Right. (4,705)
54 B: 950
55ABC Wrong. (4,705)
55 B:950
55E "E" was not one of your choices.
55 B:945
5iFrame 950 GM
5210. Which of the following represent the logical operators "OR" and "AND"?
53A Hand'
53
53B 'and &&
53
53C ## and H:

53D+ H1 and &&

53E @@ and ++
*54 Right. (4,720)

54 B:955
55ABCE Wrong. (4,720)
55 B:955
5iFrame 955 T

S52 *t* End of Lesson Material $9*
52
52 This marks the end of lesson number two. I hope that it was of some -

52 benefit to you. I am looking forward to seeing you in lesson number
52 three. I hope that you didn't have too much trouble with the material
52 presented in this lesson. If you did, please voice your comments to
52 your training monitor who will in turn contact the CAl Plans Branch

52EN Well, le' aealook at how you did with the test..

53END

C 50



• ..

File "LESSON3"

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE
# WWWW WW EE LL CC 00 00 MMM MMM EE
# WW WW WW EEEEE LL CC 00 00 MM MM MM EEEEE

WWW WWW EE LL CC 00 00 MM MM MM EE
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

#

# TTTTTTTTTT 00000000 P..
# TT 00 00
# TT 00 00
# TT 00 00
# TT 00000000

# .

# LL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 3333333
# LL EEEEEEEE SSS SSS SSS SSS 00000000 NNN NN 33333333
# LL EE SSS SSS 00 00 NNNN NN 33 " .
# LL EEEEE SSSS SSSS 00 00 NN NN NN 333
# LL EEEEE SSSS SSSS 00 00 NN NN NN 33
# LL EE SSS SSS 00 00 NN NNNN 3 33
# LLLLLLLL EEEEEEEE SSS SSS SSS SSS 00000000 NN NNN 33333.333
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 333333

# THE LESSON YOU ARE ABOUT TO TAKE CONTAINS INFORMATION ON PROGRAM CONTROL
# STATEMENTS USED IN THE C PROGRAMMING LANGUAGE.
#
# THE LESSON CURRENTLY CONSISTS OF FIVE TOPICS.

# The Lesson Breakdown Is As Follows:
#

# Topic 1: If, If-Else, Nesting, and Switch - This topic gives descriptions
# of the structure and use of the If and If-Else control statements
# and how to "nest" these statements. Also covered in this topic
# is the Switch control structure. (Approx. time = 15 min.)

#

.Topic 2: Loops (While, For, and Do-While) - This topic discusses the struc-

# ture and use of loop statements. (Approx. time : 15 min.)

# Topic 3: Break and Continue Statements - This topic gives a description of
# the Break and Continue statements and how and when they are used.
# (Approx. time = 10 min.)

# Lesson Breakdown Continued:

# Topic 4: boto statement and Labels - This topic gives a description of the

# Goto statement and the use of labels within a C program.
# (Approx. time =5 min.)

L -. 51

z.- -. v .".".- .-. '.-.-.-. - --. ,. -.. *,. -..-.--- ,-*..---,.,'--' "i ".,i.. ..- i-i i-.*.- i.i-i.-i.>,i .-.



,K • "°-

# Topic 5: Lesson 3 Test This is the lesson test over items that have

# been presented in the previous four lesson topics.
# (Approx. time =5 min.)

# TOTAL LESSON TIME IS APPROXIMATELY 5) MINUTES.

#

# I hope that you enjoy it!

* SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING: ** S.

* STATUS TOPIC #9 TOPIC TITLE

I If! If-Else, Nesting, and Switch *

* 2 Loops (While, For, and Do-While) .

Break and Continue Statements *

4 Goto statement and Labels

@ 5 Test Over Lesson 3

S NOTE: A "STATUS" OF "+" INDICATES TOPIC SUCCESSFULLY COMPLETED.

1lFrame 100 T IF, IF-ELSE! NESTING, SWITCH
12' *5* Control Statements *

12 Control statements are used in programming languages to provide a
1-' means of altering the "normal" flow of the program.

l2 Without the use of control statements, program execution would proceed
1" in a sequential fashion starting with the first executable statement
12. and ending with the last executable statement. In most cases this is
12 not the desired way in which the programmer wants the program to exe-
12 cute. Thus, the need and capability for imposing control over program
12 execution using program control statements.

12 The control statements that we will be looking at in this topic are
12 the "if"., "if-else", and "switch". We will also cover "nesting" of
12 "if" statements.
12
12 Let's get started.

(52

* .T



13B: 105
S lFrame 105 T
12 *** If Statement ***
12
12 The "if" statement is used to control the execution of a statement or
12 statements by testing an expression. The expression is checked to see K.-<
12 if it is "true" (non zero) or "false" (zero). If the statement is in-
12 deed "true", then the statement (or statements) following the "if" is
12 executed. If the expression is "false", then the next sequential
12 statement is executed.

12 The structure of the basic "if" statement is as follows:
12
12 if (testexpression)
12 statement to be executed;

12
12 next_sequential _statement;
12
I2 Let's take a look at an actual example of the basic "if" statement.
13B:110
liFrame 110 T
11 If Statement Continued .
12
12. For this example let tax val, hightax, and taxrate be of type "int".
12
12 if(tax val >= 10)
12 high_tax++;

12 tax rate = tax val / 100;
12
I* In this example, the expression "tax val >= 10" is tested. If the
12 value of "tax val" is greater than or equal to 10, then the statement
12 "high tax++;" is executed, otherwise program execution continues with
12 the statement "tax rate tax val / 100;"

12 By now you should be asking yourself: "How does the compiler know what
12 statement is associated with the 'if' statement?" The answer of course
12 is quite simple. Let's clear up the question and expand the "if".
13B: 1 15

llFrame 115 T
12 * If Statement Continued -

12 The example we just looked at could just as easily have been written as:

12

I if(tax val 10)
12 hightax++;
I tax _rate = tax val / 100"
J?

12 This is confusing to the programmer, but not to the compiler. When
1 the "if" statement is encountered, the next sequential statement is
2 the only one that is associated with it. Therefore, only "high tax++-" ,
1 is subject to conditional execution. The statement "tax _rate tax val

U -..',. .•. .. .. .. -.-" ... -. .- ..-- -•° .° ..' '1



12 1 00;" will be executed no matter what the result of the "if" test is.

12
* 12 This brings up the question of how do we provide for the execution of

12 several statements after the "if" statement? Let's take a look.
, 13B: 120 V.

11Frame 120 T
12 * If Statement Continued *
12
12 If it is desired to have a group of statement's execution controlled
12 by an "if" statement, then you must use braces "0}" to form a "block" F

* 12 of one or more statements to be conditionally executed. For example:
12
12 if (test expression)
12 {
12 first statement;
12 second statement; V
12
12
12
12 last statement;
12 2

12
12 next_sequential statement;
13B: 125 125."-

.. lFrame 125 QM ...

12Which of the following is used to "block" statements into a group to be
l2conditionally executed?

,._ 13A
138 £'

13
13C+ { I-13 t?
13D ' 1
14 Correct.
14 B:130

" 15ABD Wrong. Choice "C" is correct.
15 B:130
15E I'm sorry, "E" was not one of your choices.
15 B:125
lIFrame 130 T
12 **$ If-Else Control Structure *-"
12

)12 An option to the "if" statement is the use of an "else".
12
12 I will use the same example as before to illustrate the structure and
12 use of the "if-else" control structure.

*. 12 -.

. 12 if(tax val 1= 10)
12 high_tx++;
12 else
12 low tax++;

C - 54

. . ' .



12 tax rate = tax val / 100;
12-,.. l
12 Here, the expression "tax val >= 10" is tested. If the value of the
12 "tax val" is greater than or equal to 10, then "hightax++;" is execu-
12 ted, otherwise "low tax++;" is executed before execution continues with
12 the statement "tax rate = tax val / 100;"
13B: 135
1lFrame 135 T
12 $ If-Else Control Structure Continued $
12
12 Of course you may use a "block" of statements after either or both the
12 "if" or "else" parts of the control structure. For example:12 -"-

12 if (testexpression)I-

1 statement_1;
1 2 statement 2;
12-
12 else { '7..o

alt_statement 1;
I- alt statement_2;
1- statement 3;
12 ] '"-

12 next_sequential statement;
13B: 140
1lFrame 140 T
12 I-Else Control Structure Continued .
12
12 It is often the case that you may need to test more than one expres-
12 sion within an "if-else" structure. This may be done by using what
12 is called a multi-way decision structure. I will show you one way
12 to do this using the "if-else" structure now, and later we will see
12 another way using the "switch" structure. Using "if-else" structure:

* 12

12 if(tax _val >= 10) Using this structure, one of the
12 high tax++; variables: "high tax", "low tax",
12 else if(tax val <=5) or "medium tax" will get incremented
12 low tax++; depending on the value of "tax val".
12 else If you didn't want to keep track of
12 medium_tax++; "medium-tax", you could leave off
12 tax rate = tax val / 100; the last else and its statement.
13B: 145
llFrame 145 OF
12When using the "if-else" control structure, you are limited to only one
12executable statement for each part of the structure. (True or False)
13N
14 Right. "Blocks" of statements can be defined by the use of braces "Cl".
14 8: 150
15 Wrong. "Blocks" of statements can be defined by the use of braces "(3".
15 B:150
1lFrame 150 T

C - 55 "-'"



* '- 
-  

.' -, , - -..- ,, ' " - -" - .- - 7° - - - - . -, % . - .% - - -* % - - . --. :- l - . ,- .. -. .. -*-* ,, - - - " .-**

12 *** Nesting *"-
- 12
*12 Another capability of the "if-else" structure is being able to "nest"

12 other "if" or "if-else" structures within the original "if-else".
12 For example:
12
12 if(test exp 1) 1 In this structure, if "test exp 1" is true
12 if (test exp_2) then "testexp 2" is checked and if found
12 statement one; true, then "statement one" is executed if
12 else 1 however, "test exp 2" is false, then the
12 alt statement one; "alt statement one" is executed. If the
12 else 1 "testexp_l" was found to be false, then
12 statementtwo; only "statement two" would be executed.
12 nextseq statement;
12

12 Note: True is any "non zero" value and false is a "zero" value.
'12 Also, "blocks" of statements can be used in the structure.

13B: 155
1lFrame 155 T
12 * Nesting Continued *
12
12 Caution must be exercised when nesting "if-else" structures. Remember,
12 the "else" part of the "if-else" structure is optional. Thus, it is

12 fairly easy to have an "else" apply to the wrong "if" statement.
12 Let's take a look at an example to show how this can happen.

*12 - i

12 For our example, let's say we want to check an expression and if it is
- -12 true, then we want to check a second expression and if it is true, then

12 we want to execute a statement, but if the second expression is false,
12 we don't want any statement executed. If however, our first expression
12 is false, then we want to execute a different statement. How would we
12 code such a thing? Well, let's give it a try.
13B: 160
lIFrame 160 T L_
12 Nesting Continued 

.12 J- 7

12 At first glance the following seems to do what was described.
12
12 if (test_exp_l)
12 if (testexp_2)

12 statement-one;
12 else
1statement-two;
12

12 Even though I indented the code to look like the "else" goes with the
12 first "if", it really goes with the last "if" that doesn't have an
12 "else". Thus, the above code doesn't solve the problem as I stated it.
138:165
IIFrame 165 T
12 Nesting Continued -
12
12 In order to solve the stated problem, we must use brases to force

C - 56'

* ..- . ,.*. . -*•



12 program execution.

12
12 Compare the code I gave before (left) to the correct code (right).
12
12 if(testexp_ 1) if(testexpl)

- 12 if (test_exp_2)
12 statementsone; if(test_exp_2)
12 else statement-one;
12 statement two; 1
12 else
12 statement two;
12

12 As you can see, the execution of the code is greatly affected by the
12 placement of the braces in the "if-else" control structure.
13B: 170
1lFrame 170 QM
12Given: if(x > 0)
12 if(, > 10)
12 x_large = 1;
12 else
12 x_small = 1;
12 else
12 if(x == 0)
12 zero 1;
12
12Which of the following would be true if x = -1 ?
13A xjlarge would be set to 1
13B x small would be set to 1
13C x zero would be set to 1
13D none of the above
13E A, B, and C would be true
14 Very good.
14 B:175
15ABCE Wrong. All expressions would be false, therefore no statements would
15 be executed.
15 B:175

1lFrame 175 T
12 $** Switch Statement $*

12
12 We saw earlier that one way to do multi-way decisions was with the use
12 of several "if-else" statements linked together.
12
12 A common use of such a structure is when you test a variable and depend-
12 ing on its value (as compared to a constant) a statement or group of
12 statements is executed. For example:
12
12 if(test var == 10)
12 statement to be executed;

12 else if (test var == 15)
12 altl statement to be executed;.
12 else if (test var == 20)
12 alt2 statement to be executed; r

C - 57



12 else
12 default statement to be executed;
13B: 180
llFrame 180 T
12 * Switch Statement Continued $
12

12 In the example, we saw how to use the "if-else" structure to accomplish
12 the testing of one variable and execution of different statements depen-
12 ding on the value of the variable. i-k
12

* 12 Well! in C we have another way to accomplish the same thing. We can
" 12 use the "switch" statement. In the "switch" statement each constant

12 value we wish to test the variable against is labeled with the keyword
12 "case". The last statement (following the last "else" in our example)
12 is labeled with the keyword "default".
12
12 Let's take a look at our example again, but this time we will use the
12 "switch" statement structure.
13B: 185
lIFrame 185 T
12 * Switch Statement Continued
12

. 12 switch(test var) { Note: "test var" must
12 case 10: evaluate to type "int",
12 statement to be executed; braces are used, colons
12 break; are used after each case
12 case 15: constant (constant ex-
12 alt1_statement to be executed; pression), "break" is
12 break; discussed in topic 3 of
12 case 20: this lesson, "break" &

. 12 alt2_statement to be executed; "default" are optional,
12 break; 1 the final semicolon is
12 default: required since "switch"
12 default-statement to-be executed; is really just a "block" I

break- type statement, and the
order of cases/default

-, 1 is arbitrary.

13B: 190

1lFrame 190 OP
12Essentially, the "switch" is just a special case of the "if-else" structure, .
12and its use is really just "Programmer preference". (True or False)

14 Right. You can do the same thing using the "if-else" structure.
14 B:195
15 Wrong. You can do the same thing using the "if-else" structure.
15 B:195 P

* 1lFrame 195 T
12 *** Topic Review *.'- ~12'-"

12 In this topic we have looked at the "if" statement, the "if-else" struc-
, 12 ture, nesting of the "if-else" structure, and the "switch" statement.

12

C - 58."-

. . . . .. . . . . . . . . . . . . . . . . . . '.. .. "



"-7 -W

12 We have seen many examples of what these statements and structures look
12 like, and how they are used.
12
12 In the next topic area I will describe and show examples of loop state-
12 ments and structures.
12
12 See you there!
12
12
12 ** This concludes this topic area. **.
13END
21Frame 300 T LOOPS (WHILE, FOR, DO-WHILE)
22 *** Loops $..

22 Loops are used in programming languages to provide a way of repeatedly
22 executing a statement or group of statements within the program.

22 The way in which a loop is written can vary. The most common reason
22 for this variability is again "programmer preference". Most, if not
22 all, loops can be written using only one of the structures that we
22 will be covering in this topic area.2-7
22 The loop control statements and structures that we will be looking at
22 in this topic are the "While". "For", and "Do-While".

22 Let's get started.
23B:305

(P 21Frame 305 T
22 $* While Loop **-

22 The "while" loop is a two part control structure. The first part is
22 the loop control expression, and the second part is the executable
22 body.

22 The loop control expression is a expression that is tested at the be-

22 qinninq of the loop and after execution of the body. The loop control
2 2 expression is "true" whenever it is "non zero" and "false" when it is

2 -1 "zero". Execution of the body will continue until the control expres-
22 sion is "false". If the expression is "false" the first time then
22 prooram control will drop to the next sequential program statement.

22 The structure of the "while" loop looks like this:
22
4.2 while (testexpression) Of course, braces can be used to
22 statement to be executed.; define a "block" of statements.
23B:310
21Frame 310 T
22 * While Loop Continued $
'2

22 Here is an example Using the "while" loop control statement:
2 2

22 sum 0 
-

C -59• -. -. t-:-...-



-. ; V Z . t - f PL RT IM ad

loop var 0
2 while (loop var == )

- 22 if (sum < 10)
212 sum += 2;
22 else
2 2 1loop var++;

2--
2

22 When the "while" is encountered, the test expression is checked and
-found to be "true", so the loop body is then executed. Execution of
22 the loop body will continue until the loop control expression is no
22 longer true. That will occur, in this example, after 6 iterations.
23B: 3,15

* 22Frame 315 OP
221f the loop control expression is "false" the first time it is checked, then
22the loop body will be executed only once before program control drops to the

" 22next sequential program statement after the "while" loop. (True or False)
23N

*24 That's riqht. The loop body will be skipped entirely.
24 B:320
25 Wrong. The loop body will be skipped entirely.

25 B:320
21Frame 320 T
22 * For Loop M*

22 The "for loop is a three part control structure. The first part is
22 the loop control initialize expression. the second part is the loop
22 control test expression, and the third part is the loop control incre-
22 ment expression.

22 The loop control initialize expression is a expression that is evaluf-
22 ated once and can serve to initialize variables used within the loop
22 body. The loop control test expression is tested at the beginning of

2 the loop and after eecution of the body. Again, the loop control ex-
22 pression is "true" whenever it is "non zero" and "false" when it is

2 "zero". Execution of the body will continue until the control expres-
22 sion is "false", If the expression is "false" the first time, then

* 22 program control will drop to the next sequential program statement.
22 The loop control increment expression is evaluated after execution of
2 2 the loop body.
23B: 325
21Frame 325 T
22 S For Loop Continued S

>; ~ ~ 22 '

22 The structure of the "for" loop looks like this:

22 t

22 for (initialize exp; test exp: increment exp)
22 statement to beexecuted

22 Aoain. the braces can be used to define a "block" of statements.
22 Such as:

C 60



•2"-2 for (loop var =0; loop var < 50; loop vat++)
22 first statement;
22 next statement;
22 1 ast - statement-,
22 }3
23B4:330
2lFrame 330 T
22 *For Loop Continued

22 Here is an example using the "for" loop control statement: L

22 for (i 0; i < 20, i++)
22 if((i % 2) ==0)

2 2 printf("i value is even");
22 else
22 printf("i value is odd");

22 When the "for" is encountered, the loop control initialize expression
242 is executed setting i equal to zero. Next the loop control test ex-
22 pression is checked and found to be "true", so the loop body is then
242 executed. After execution of the loop body the ioop control increment
22 expression is executed settint i equal to i plus one. The loop control

L2 test expression is then checked again. The execution of the loop body
22 will continue utntil the loop control expression is no longer "true".
23B:335
2lFrame 335 QM'
22Which of the following is "not" a part of the "for" loop control structure?

! 23A initialize expression

23B4 test expression

23C+ terminate expression

in,-,

23D increment expression
24 Correct. Keep up the good work.
24 B:740
25ABD No. The loop structure has that as one of its parts.
25 B:340
25E I'm sorry. "E" was not one of your choices.

2lFrame 340 T
22 For Loop Continued i

"'- ~22 i (i 7 ) = )"'

22 As I mentioned before., loop structures serve basically the same purpose
22 and can usually be accomplished by using one such structure. We have
22 looked at both "while" and "for" loops so far. Let's compare the strUC-
22 ture of these two loop types.

22 ""

22 The "while" structure: r The "for" structure:

* --i"

22 initexp; for (i t exp; test_exp increxp)
22 while (testsoexp) f statementito be executed;

C -61

,. . . . . . . . . . ..5.-" .."

in 23Ai i initialize...........s......



22 statement to be executed;

22 incr exp;
22 )

22 Which of these two structures you use is up to you, but there are times
22 when one may be more appropriate than the other.
23B: 345
21Frame 345 T
22 $$$ Do-While Loop $$*
22

22 The final loop structure available in C is the "do-while".
22

22 The "do-while" loop is a two part control structure just like the "do"
22 loop. The basic difference between the "do" loop and the "do-while"
22 loop is that the first part of the "do-while" is the executable body,
22 and the second part is the loop control expression. This is just the
22 opposite of the "do" loop control structure.

nfl

22 The loop body will be executed once, before the loop control expression
22 is tested at the end of the loop. If the loop control expression is

22 "true" then the loop body will be executed again. Execution of the loop
22 body will continue until the loop control expression is "false". The
22 biggest difference, I'm sure you have noticed, is that the loop body
22 will be executed at least one time before program control drops to the
22 next sequential program statement.

23B:350
21Frame 350 T
22 * Do-While Loop Continued *
22

22 The structure of the "do-while" loop looks like this:

22 do
22 statement to be executed;
22 while (test_expression);22.

22 Of course, braces can be used to define a "block" of statements.
22 It is suggested that you use braces at all times in order to avoid
22 the confusion caused by the "while" statement at the end of the loop.

-2 It tends to look like the start of a "while" loop. The following the
22 prefered format:
22 i--

22 do f
22 statement to be executed;
22 . while (test expression);
23B: 355
21Frame 355 UP
22The major difference between the "while" loop and the "do-while" loop is that
22the "do-while" will always be executed at least once whereas the "while" loop
22may be skipped altogether if the loop control expression is "false".
22(True or False)

24 Riqht.

C -62



24 B: 360
*- 25 Wrong. That is a true statement.

25 B: 360
2lFrame 360 T
22 * Topic Review**

22 In this topic we have looked at the "while", "for", and "do-while"
22 loops.
22'

22 We have seen many examples of what these statements and structures
22 look like.. and how they are used.

22 In the next topic area I will describe and show examples of the
'422 "break" and "continue" statements.

2 2 Hope I see you there!

* 22 **This concludes this topic area.
* 23END

31Frame 500 T BREAK AND CONTINUE STATEMENTS
32 **Break Statement**

32 The "break" statement is used to terminate a "while", "for", or the -

32 "do-while" loop before the loop control expression becomes "false". -

32 It is also used in the "switch" control statement to prevent further
32 statement execution after a "case" has been found that satisfies the
32 switch.

32 When a "break" statement is encountered, it is executed and the loop
32 or case in which it is located is terminated immediately. Program
32 control than passes to the next sequential statement following the
32 loop or switch.

32 1 will show you how this looks in each of the loop structures as well
32 asthe "switch" structure.

* 32 But first I want to be sure you want to see these examples.
33B1:505

-- 3lFrame 505 OP
32Do you want to see examples of how the "break" statement is used",
32(Yes or No)
33Y
34 OK. Here we co.
3 4 B:510
35 OK. Let's take a look at the "Continue" statement.
35 B:535
i1Frame 510 T -V

32 * Break Statement Example #1: "While" loop*$

32 The following is an example of how the "break" statement can be used in
3 the "while" loop.r

C 6 63

------------------- ** * *..-.*,-.**P.-- .. **.- .. . ,~.~



32 exit = 0; Without getting into details of how the
32 while (exit == 0) ( "scanf" statement works or where you

32 scanf("%d". &inint); would use this section of code, this
32 if(inint < 0) example shows how the "break" statement
32 break- can be used to terminate the "while"
32 else loop before the loop control statement

sLm += in int; becomes "false". If the variable named
32 if(sum > 100) "in int" ever becomes a negative number,
32 exit++; the "break" will be executed and program

1 execution will continue with the next
32 next_sequential statement; sequential statement after the loop.
33B:515
31Frame 515 T
32 *3* Break Statement Example #2: "For" loop *3*

32 The following is an example of how the "break" statement can be used in
32 the "for" loop. 3-.-.

32 for (i0=; i<=10; i++) {
32 inchar = getcharo:

if(in char = ')
32 break;t

~~32 last-name~i] = in-char; .''
32 ; ..
32 next sequential statement;

- ~32 ""
LO 32 Here, the loop will be terminated if "in char" becomes a period (.) and

32 program execution will, once again, continue with the next sequential
. 32 statement after the loop. Note: We will cover "arrays" in lesson 4

32 and "input & output" in lesson 6.
33B:520 "
31Frame 520 T

32 *9* Break Statement Example #3: "Do-While" loop.

32 The following is an example of how the "break" statement can be used in
72 the "do-while" loop.

32 count = 0I In this example, there are really
32 do t two loop control expressions. The
32 count++; loop would be terminated if the
32 if(count 10) value of "count" becomes greater
32 break; than 10, or if variable "avgnum" -

32 avq num = (total / tot num); ever exceeds the value of 69.
32 scanf("%d", &inint); Since the "do-while" is executed "
3.2 totnum++; before the loop control expression
32 total += in-int; is tested, the "break" statement
32 while (avq num < 70); could be used to control the loop's
32 next-sequential_statement; execution the first time through.
33B:525
31Frame 525 T

*32 Break Statement Example #4: "Switch" statement *$*

C - 64



.7C

32 ""

32; The followinq is an example of how the "break" statement is used in
32 the "switch" statement.32.""

32 switch(temp) { The "break" is used in the "switch" statement
32 case 70: in order to prevent the unnecessary evalua-

case 80: tion of expressions that will turn out to be
.2 nice++; "false". The "break" statement will termin-
32 break; ate the "switch" after the "case" is found
3 case 90: that is "true" and the statement(s) is execu-
32 hot++; ted. It is important to note that the execu-

break; tion of the switch is sequential. therefore
32 case 50: if in our example the value of "temp" is 70,

32 cool++; there is no need to check any "cases" after
32 break; the execution of the statement "nice++;".

722B 530

3IFrame 530 OM
32Which of the following will the "break" statement "not" work with?
A "while" loop

33 ---

33B "for" loop

33C "switch" statement

33D+ "if-else" statement

33E "do-while" loop

34 Right you are. The "if-else" works the same as the "switch" without the use
4 of the "break" statement.

7 4 B:535
35ABCE Wrong. The "if-else" works the same as the "switch" without the use
5 of the 'break" statement.
3 5P.535

* IFrame 5Z5 T
**C Continue Statement *'"

2o The "continue" statement is used within a loop structure in order to
2 force the loop's next iteration. The "continue" is used with the

32 "while", "for", and "do-while" loops, but NOT with the "switch" state-
2 ment.

32 When you use the "continue" in the "while" and "do-while" loops, it
T2 forces the immediate evaluation of the "loop control expression".

32 When you use the "continue" in the "for" loop, it executes the "loop
: 2 control increment expression" and then the "loop control expression"
. is evaluated.

.. Let's take a look at an example.
--E: 540

:1Frame 540 T

-. . . . . .. . . . ...- ... . . .

.-.. . . . . . . . . . . ',°*-

.-.......°........ . ......... ...... ....



* 32~ * Continue Statement Continued

32 The following is an example of the use of the "continue" statement in
a "for" loop.[C 32

32 for (i=O; i<max i; i++) {
Z2 2 if(name area[iJ P ")
32 continue;
32 num-found++;

.: .. '2 '..'.

" 32 In this example the "continue" statement causes the loop to be executed
32 until a "space" is encountered or the "loop control test expression"
32 becomes "false". Once a space is found, "num found" is incremented,
• _, the "loop control increment expression" is executed, and the "loop
:2 control test expression" is evaluated. Execution will continue in
32 this fashion until the "loop control test expression" becomes "false". *. -

33B: 545
31Frame 545 OP
32The use of the "continue" is only effective in the loop control structures
32of "while", "for", and "do-while". (True or False)
3Y

34 Right. It can be used in a "switch". but only if the switch is inside of
.4 a loop structure, in which case it would cause the next iteration of the
34 loop structure.
.,4 B:550
35 Wrong. It can be used in a "switch", but only if the switch is inside of
35 a loop structure, in which case it would cause the next iteration of the
35 loop structure.
3 B: 550
, IFrame 550 T

•,* Topic Review 4141.

32 In this topic we have looked at the "break" and "continue" statements.

I have presented you the opportunity to see many examples of how the
"break" statement is used in the three different loop structures as
well as the "switch" statement. You also saw an example of how the
"continue" statement can be used within a "loop" structure.

,z In the next topic area I will describe and show examples of the
S:.2 "qoto" and "label" statements.

32 Hope I see you there'

** This conclLides this topic area. **-
7.END
41Frame 700 T GHUEO STATEMENT AND LABELS
42 ** Introduction *"-
4-
42 The use of ".oto" statements has come under attack within the so+tware

66-. - ... . . . . . . . . . .



*- .. ,

,. ,,

42 engineering community of experts. Although most languages provide for
.'. 42 the use of "goto", it is highly discouraged. Most instances of the

42 statement can be eliminated by careful software development. This is
42 especially true in a language such as C.
42.
42 Even though use of the statement is discouraged, it is a part of the
42 language and therefore I will give a brief description of how it is
42 used.
43B:705 

"

41Frame 705 T
42 ** Label Statement ***
42--

42 In order to use the "goto" statement, you must have some way of identi-
42 fing where to "qoto" to. In other languages such as BASIC or Fortran,
4-2 this is done by using statement numbers. C doesn't use statement num-
42 bers but instead uses "labels".
42
42 A label is declared in a function by using the following form:
42
42 label name:
42
42 When namino a "label", follow the same rules that you use when naming
42 a variable.
42
43B: 710
41Frame 710 T
42 ** Goto Statement **-

42
42 The "goto" statement is used to transfer program control to some point
42 within a function other than the next sequential statement. The point
42 MUST be a labeled point in the same function.
42
42 The most common use of the "goto" statement is to terminate execution
42 of a deep nested loop structure. As we learned in the last topic area,
42 we can use the "break" statement to terminate a loop but it will only -

42 terminate the inner'ost loop (the one it is physitally in).
.42

42 A "goto" statement has the following form: goto label _name*"
42
42 Note: "aoto" is one word. The use of: go to label name, will cause
42 a compile error.
47B:715
41Frame 715 T
42 Goto/Label Example *.
42
42 The following two sections of code provide an example of how the "goto"
42 statement is used in coniunction with a label and how to write the same "'
42 section without using a "qoto" statement.
42
42 Code with the "goto" & "label" Code without using the "goto"
42 ""'

42 inout ) ' in out() {

.-. -.- ......--.-.
. . .. . . . . . *.. *.' -.---.

cn O t *.. ,7::.,

:.,.:.



I..

42 char c; char c;
42 begin: do {
42 c = getcharo; c = getcharo;
42 if(c!='\n') I' if(c'='\n')
42 printf ("%c"c); printf("%c',c);
42 goto begin; I i 3 while (c!='\n');
42 returnz return;
42 '43B: 720

41Frame 720 OF,
42You can only use the "aoto" statement to transfer program control to a label
42within the function where the "goto" is located. (True or False)
43Y
44 Right.
44 B: 725 -'-

45 Wrong. You can not transfer control to any other part of the program using
45 the "goto" statement.
45 B. : 72
41Frame 725 T
42 *** Lesson Three Summary **-

*42 - -

42 Well, we have come to the end of another lesson. If you have seen the
42 four subject topics in this lesson, you should now be ready to take
42 the final test. If you feel that You don't understand something well
42 enough to pass the test, please retake the topic that is giving you
42 problems.
42
42 Topic 1 described the "if", "if-else", "nesting", and "switch".
42
42 Topic 2 described the "while", "for", and "do-while" loops.
42
42 Topic 3 described the "break" and "continue" statements.
42
42 Topic 4 described the "label" and "goto" statements.
42
4 2 Good Luck on the test.
4 JEND
51Frame 900 TT TEST OVER LESSON 3'
52 Welcome to the final test of lesson three. This test consists of ten
52 questions over material presented in the previous four topic areas.

52~ In order to successfully complete this lesson. you must achieve a
5 2 minimum score of 70% (seven out of ten questions correct).

52 If You miss a question, the correct answer will not be shown. It is
52 uQ to you to research the correct answer.

52 Well, enough said. Let's get on with it. Good luck!
B:905-

51Frame 905 OM
521. Which one of the following is "not" one of the control statements that
52was covered in this lesson?

C: - 6 '

*.-*'* ~*C *:*" -*



53A if

53B if-else

5 3 C switch

57D+ while
54 Right. (1, I )
54 D:910
55ABC Wrong. (1,100)
55 B:910
55E "E" was not one of your choices.
55 B:905
51Frame 910 QF'
522. Braces "0" are used to form a "block" of one or more statements to be
52conditionally executed. (True or False)
53Y
54 Right. (1,120)
54 B:915
55 Wrong. (1,120)
55 B:915 "
51Frame 915 OM
52. Since the "else" part of the "if-else" control structure is optional,
52care must be taken to prevent which of the following from occuring?
53A having the "else" statement skipped.

.57.B+ having the "else" applied to the wrong "if" statement.

53,C having an "else" applied to two "if" statements.

53D havina the "if" statement executed before the "else".
54 Riqht. (1150)
54 B: 9N)
55BCD Wrong. (1050)
55 8:920
55E "E" was not one of your choices.
55 8:915
51Frame 920 OP
524. Essentially, the "switch" is jLust a special case of the "if-else"
52structure., and its use is really iust "programmer preference".
52(True or False)
53Y
54 Right. (2 70)

54 B:925

'

55 Wrong. (2 ,320)
5 5 8:92"1
51Frame 925 UM
525. If the "loop control expression" in the "while" loop is "false" the first
52time it is checked, which of the following statements would be true?
53A The loop body would be executed one time only.

53B The loop would be executed until the control expression becomes "true".

C -. 69. ...



* - 5::C+ The loop body would be skipped altogether.

53D The loop would become an infinite loop.
*54 Right. (2.3:05) %

54 B:930)
55ABD Wrong. (2,05)

* 55 8:930
55E "E" was not one of your choices.
55 B:925
5iFrame 930 OM
526. Which of the following is "not" a part of the "for" loop control
52structure?
57-A initialize expression

53B test expression

53C increment expression

5 3

53D+ terminate expression
54 Right. (2, 320)
54 B: 935
55ABC Wrong. (2,320)
55 B:935
55E "E" was not one of your choices.
55 B:930
51Frame 935 QM F
527. The major difference between the "while" loop and the "do-while" loop is

52that the "do-while" will always be executed at least once whereas the "while"
52loop may be seipped altogether if the loop control expression is "false".
52(True or False)
57Y
54 Riaht. (2,345)
54 B:940
55 Wrong. (2,345)
55 B:940
51Frame 940 OF'
528. The "break" statement can only be used to terminate a "while" or "for"

52loop before the "loop control expression" becomes false. (True or False)
53N
54 Right. (a. 3500)
54 B:945

55 Wrong. (2,35) -

55 B:945
51Frame 945 OM
529. Which of the following structures is the "continue" statement not

~effctielyused with?
--527 for loop

58I do-while loop

5,C+ switch

7(1)

" 5Ohio



N -7- BY- rF6I

"" 53

53D while loop
54 Right. (3,535)
54 B4:950
55ABD Wrong. (3,535)

"" 55 B:950
- 55E "E" was not one of your choices.

55 B:945
5lFrame 950 QM
5210. When using the "goto" statement in your C program, which of the
52following must be adhered to?
53A+ The target "label statement" must be in the same function.

53B The target "statement number" must be in the same function.
~53

53C The "goto" statement must not be in a loop structure.
5 >"
53D The "goto" statement must be before the "flagged" statement.
54 Right. (4,710)
54 B:955
55BCD Wrong. (4,710)

55 B:955
55E "E" was not one of your choices.

*) 55 B:950
51Frame 955 T

*' -- 52 $ $ End of Lesson Material "

52 This marks the end of lesson number three. I hope that it was of some

52 benefit to you. I am looking forward to seeing you in lesson number
52 four. I hope that you didn't have too much trouble with the material .

"" 52 presented in this lesson. If you did, please voice your comments to
52 your training monitor who will in turn contact the CAI Plans Branch

52 at Keesler AFB. MS.
52L
52 Well, let's take a look at how you did with the test ...

. 53END

r

............................................................. •.,,.



* -' -1.-'.7

File "LESSON4"

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE
# WW WW WW EE LL CC 00 00 MMM MMM EE
# WW WW WW EEEEE LL CC 00 00 MM MM MM EEEEE
# WWW WWW EE LL CC 00 00 MMMM MM EE
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

7,. #

# TTTTTTTTTT 00000000
# TT 00 00
# TT 00 00
# TT 00 00
# TT 00000000

# LL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 444
# LL EEEEEEEE SSS SSS SSS SSS 00000000 NNN NN 4444
# LL EE SSS SSS 00 00 NNNN NN 44 44
# LL EEEEE SSSS SSSS 00 00 NN NN NN 44 44
# LL EEEEE SSSS SSSS 00 00 NN NN NN 44444444 *'-".'

# LL EE SSS SSS 00 00 NN NNNN 44444444
# # LLLLLLLL EEEEEEEE SSS SSS SSS SSS 00000000 NN NNN 44
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 44

# THE LESSON YOU ARE ABOUT TO TAKE CONTAINS INFORMATION ON ARRAYS, POINTERS,
# AND ADDRESS ARITHMETIC USED IN C PROGRAMMING.

# THE LESSON CURRENTLY CONSISTS OF FIVE TOPICS.

* # The Lesson Breakdown Is As Follows:

# Topic 1: Introducing Arrays - This topic introduces the declaration.
# initialization, and use of arrays. (Approx. time 15 min.)

# Topic 2: Introducino Pointers - This topic introduces the declaration
# and use of pointers. (Approx. time = 15 min.)#

# Topic 7: Wort:ina with Pointers I - This topic is the first of two that
# covers how to work with pointers. Emphasis is on how pointers
# are passed to functions. (Approx. time = 10 min.)

# Lesson breakdown Continued:

# Topic 4: Working with Pointers II - This topic is the second of two that
# covers how to work with pointers. Emphasis is on how pointers
# are used in conjunction with arrays and the use of address

* # arithmetic. (Appro. time = 10 min.)

,'-" C - 72 -.

...#

.-. >.->



# Topic 5: Lesson 4 Test - This is the lesson test over items that have
# been presented in the previous four lesson topics.
# (Approx. time 5 min.) .

- # TOTAL LESSON TIME IS APPROXIMATELY 55 MINUTES.

# I hope that you enjoy it!

* * SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING:

. STATUS TOPIC # TOPIC TITLE .
- .- - -

@ 1 Introducing Arrays -

@ 2 Introducing Pointers *

SWorking with Pointers I

@ 4 Working with Pointers II

5 Test Over Lesson 4 .

. NOTE: A "STATUS" OF "+ INDICATES TOPIC SUCCESSFULLY COMPLETED. ,

llFrame 100 T Introducing Arrays
12 Introduction *,.*12"'"

12 An "array" is a grouIp of contiguously stored related variables.
12
12 In this topic area we will take a look at the basic use of arrays and

- 12 some advanced concepts involving arrays.

, 12•"-.

12 *Io be more specific, we will be looking at: one dimensional arrays,
12 multidimensional arrays, and array initialization.

,') ~12,',-',

12 Let's oet started.
:" 1JB: 10}5,.

IlFrame 105 T
-12 ** One Dimensional Arrays *

- ~12"-•

12 The language C does not have a "string" variable type therefore it
12 uses an array of characters to accomplish the same thing. If you

C ~ ~ ,  7

*. . . . . .. . . . . .' .*.-



12 think of a string of characters such as a sentence. How would you
12 store it in your program? Well, the answer of course is to use an

" 1I array of characters.

12 The structure of the basic one dimensional character array declaration
12 statement is:

:12 char var_nameln]; where "n" is the number of characters in the array.
12
12 Now comes the tricky part. The individual characters in the array
12 are called the "elements" of the array. Accessing these elements is
12 a very common procedure in programming. Let's look at an example that
12 uses an array and see how this is done.

- 13B4: 1 10

lIFrame 110 T
12 * One Dimensional Arrays Continued t
12
12 For our example, let's say we want to store the word Payment . The
12 first thing we must do is decide on the size of the array that will
12 hold this word. This can be done by counting the number of characters
12 in the word. So, let's see... I count B. Z

12 At first glance it looks like I made a mistake in counting the charac-
12 ters in Payment . This is not the case. In C the first element of

an array is stored in array position 0 (zero), and the last (string)
.- 12 array position element is always a null character (\0). So, using

12 the following statement to declare our word as a character string
1 constant...

12 char exword[8] "Payment";
* 12

12 the array will be filled as follows:
*13B: 115-""-

llFrame 115 T
12 * One Dimensional Arrays Continued .-" ~12 """

- 12 ex word[O] = P
12 ex wordEl) = a 9

12 ex _word[2 = y
12 exwordE3J = m
12 exword[4] = e
12 ex word[5J = n
12 ex word[6] = t
12 ex word[7] = \0
12

12 The "null character" stored at the end of a string array is put there .
12 automatically by the C compiler. All you have to worry about is to
12 leave room for it in your array. What if you don't want to worry
12 about such things? Well, there is a way to get around counting the
12 number of characters in a string constant and then adding one for the
12 null character. Let's take a look.
13B: 120

74

• 
.. .



- y. -°r....

lFrame 120 T
y 12 $ One Dimensional Arrays Continued "

12
12 Using the statement: char ex word[] = "Payment"; will accomplish the
12 same thing as the example we just looked at. Namely, an array consis-
12 ting of eight elements will be declared and filled by the compiler.
12
12 The way in which the individual elements in an array are accessed is
12 by referencing the element using an index. In our example an index of

12 4 would look like this: ex word[4] and yield the character e .

12
12 Our discussion thus far has only dealt with the C character type. The
12 use of arrays is by no means restricted to this C variable type. Here
12 are a couple examples of arrays of other variable types:
12
12 int ex -ints[35]; This is an array of integers (36 of them).
12
12 float ex-floats[67]; An array of floating point reals (68 of them).
13B: 125
llFrame 125 QM
12Given the character array declaration: char example[n) = "Example";
12Which of the following is the correct number for "n" ?
13A 10

* 13
13B 9
13
13C+ 8
13
13D 7
14 Right. Seven characters plus the "null character", therefore 8.
14 8:130
15ABD Wrong. There are seven characters plus the "null character",
15 example[O] thru example[7], therefore the correct answer is 8 ("C").
15 B: 130
llFrame 130 T
12 * Multidimensional Arrays $.'

* 12
12 As we have seen, a one dimensional array is declared using a statement
12 such as char ex _word[8]; . The dimension of this array is seen as a
12 list of characters running from ex word[0] to ex word[7].
12
12 A two dimensional array can be thought of as a table consisting of rows
12 and columns. The way in which a two dimensional array is declared is
12 as follows:

12
12 int ex int[n][m]; where "n" is the number of rows
12 and "m" is the number of columns.

*12 • "

12 Let's look at an example.
13B:1C5
1lFrame 135 T
12 * Multidimensional Arrays Continued r

C - 75

-. .. *.. * .**



12
' . 12 If we want to store the test scores for a class of 5 students who have

- 12 each taken 4 tests, we could do it like this:
12

* 12 int scoresE5]4] = {.
12 {75,80.70,95),
12 (85,85,90,951,
12 (60,90,80,90},

12 (70,80,90,901,
12 {75,85,95,85}
12 1;
12""

12 This form is very representative of how the table would look. How these

12 numbers are stored is as follows: scores[OJ[OJ = 75, scores[O]E1] = 80,
12 scores[0112] = 70, and scores[0iE3J = 95. You then increment the first
12 index and continue: scores[1][O] 85 ... scores[4J[3] = 85.

* 13B: 140
, 1lFrame 140 T
* 12 Multidimensional Arrays Continued .

12
12 In our example, we defined an array with 5 rows and 4 columns. We
12 also filled the array with test scores. Of course these test scores
12 are useless unless we have defined the student that each row represents.
12 This can be done several ways, but I would define a symbolic constant
12 for ea-h student. Such as: #define Jones 0
12 #define Smith I
12 #define Brown 2
12 #define Green 3
12 #define White 4

* 12
12 Now if you want to find out what Brown got on his third test you could
12 use the statement: Brown 3 = scores[Brown,2J; This will retrieve the
12 score stored in array position scoresE2][2], which was 80.
12
12 A good way I've found to get used to arrays is to experiment with them.

"'° 13B: 145
1lFrame 145 T
12 $ Multidimensional Arrays Continued "
12
12 As you might have deduced by now, you can define arrays of more than
12 two dimensions. All that needs to be done is add more brackets (U)
12 after the array name.

* - 12
12 For example: int four D array[5]10]E5[2?o:.
12
12 Don't ask me to give you a visual picture of such a thing, but I can L
12 tell you that there are 5000 integer storage locations allocated by
12 such a declaration (5 x 10 x t x 20 = 5000).
13B: 150
IlFrame 150 QM
12Given the array declaration: int array[2][5] = t
12 {75,80,70,95,65s, r

E - 76



12 (85,60,90,50,55) };
12
12Which of the following is the value stored in position array[I[2] ?_
13A 80 I.
13B 60
13C+ 90
13D 85
13E 70
14 Very good.

14 8:155
15ABDE No. Answer "C" is the correct one.
15 B:155
1lFrame 155 T
12 * Array Initialization *""
12
12 We have already seen some of the ways in which arrays are initialized.
12 When I gave an example of a one dimensional character array I used the

12 statement:
12
12 char ex wordB) = "Payment".

, ~12 : "

12 That is one way to initialize the character array, another way would be:
12

* 12 char ex word[] = "Payment";
12
12 Yet another way would be:
12
12 char ex word[] =

12
12 All the above are correct if the array is a "global" array.
138:160
llFrame 160 T
12 * Array Initialization Continued *
12
12 You may NOT initialize arrays that are "automatic". This means any
12 arrays that are contained within a function. In order to initialize
12 an array within a function it must be declared as "static". The way
12 this is done is by use of the keyword "static".
12
12 For example:
12•

12 This initialization is wrong. 1 ihis is the correct way.

12 sample() C 1 sample() .
12 char array[] "Example", i static char array[] "Example";

12 . . ...
" 12

12 , ,

13B:165
llFrame 165 T
12 $ Array Initialization Continued *

C - 77

* . * * -*.* . * . . . . . . . . . .



12
12 When intilializing arrays other than character arrays, the initializing
12 is accomplished with values enclosed in braces. For example: -,

12
12 A one dimensional global integer array can be initialized using:

12 int array[5J = (24,67,82,90,411;
12

12 Or, if all values of the array are being specified, the dimension can
12 be left out, as in:
12
12 int array[] (24,67,82,90,411;
12
12 Again, if the array is local to a function and needs to be initialized,
12 use the keyword "static".

13B:170
liFrame 170 T
12 * Array Initialization Continued "
12
12 Multidimensional arrays are initialized by rows, as in one of our pre-

" 12 vious examples:

12 int scoresE5E4] = { int scores[]] = C
12 75,.80,70,95), (75,80,70,95),
12 C85,85,90.95). (85,85,90,951,

. 12 (60,90,80, 90, (60,90,80,90),
12 (70,60, 90,90}, {70,80, 90,901,
12 (75, 5,995852 (75, 85, 95, B5}
12 )
12
12 If any of the values are missing, then the array value will be stored
12 as 0 (zero). Note: If values are missing, than dimensions must be

12 specified. Of course "static" must be used for local function arrays
12 that you want to initialize.
13B: 175
IIFrame 175 OP
12The integer array initialization: int array[] = (2,4,6,81: is valid for

12a one dimensional inteqer array having 5 elements. (True or False)
13N
14 Right. If you intend for the array to have 5 elements then either 5 values

14 must be qive in the list or a dimension of 5 must be explicitly stated.
14 B:180
15 Wrong. If you intend for the array to have 5 elements then either 5 values
15 must be qive in the list or a dimension of 5 must be explicitly stated.
15 B:180
lIFrame 180 T
12 **$ Topic Review .-
12
12 In this topic we have looked at "one dimensional" and "multidimensional"
12 arrays. We have also seen how to initialize these arrays.
12,.:
12 We have seen examples of what these arrays and initialization statements

C - 76

I o . ..7"



* 12 look like, and how they are used.
12
12 In the next topic area I will describe pointers and give a few examples
2 of their use.
12
12 See you there!
1212;'<

12 This concludes this topic area. S*
13END
21Frame 300 T Introducing Pointers
22 *** Introduction *.-

22 A "pointer" is a variable that contains the address of where some other
2 variable resides in memory.
22
22 In this topic area I will describe how pointers are declared and used
22 within a C program.22 ],

22 Since pointers can be very confusing to someone who has not seen them
22 before, I will restrict my discussion to elementary concepts and leave --.

22 their more advanced uses for your research.

Let's get started.

23B:305
21Frame 305 T
4- ** Pointers M**

In the declaration: int var one = 500: a storage location is set
aside in memory for an inteaer variable and the value of 500 is

22 stored in that memory location. That memory location also has a
22 memory address.

22 In C. you can determine the memory address by the use of the unary
22 ooerator &
-2 2
22 The way that You would assign a pointer variable to the memory location
22 where "var one" is located is: point_vl = &var one; this assigns the
22 address of the variable "varone" to the variable "point v"-.

22 Note: Pointer names follow the same rules as other variable types and
'22 must be declared as the same type of the variable being pointed
22 to (as we'll see later).

23B:310
21Frame 310 T
22 Pointers Continued
2 2

22 That's fine. Now we know how to find out the memory address of a
* 22 variable, but what good is it?
22 "-

22 It would be nice if we could now find out the value stored at the
2-2 address pointed to by our pointer. C just happens to have a special

C - 79

*"7



I."

2 2 operator that allows us to do just that.

22 In C, you can determine the value stored at an address pointed to by
22 pointer by the use of the unary operator .

22 The way that you would use this operator to find the value stored at

22 a pointed to address is: varlval = *point_vl; this statement assigns

22 the value stored at the memory location pointed to by "point_v1" to

* 22 the variable "varlval". Which, in our example. would be 500.
23B: 315
2lFrame 315 T
22 * Pointers Continued

22 To help clear up what we have done so far, let's look at our example

22 again and compare it to statements we are familiar with.
22
22 The sequence of statements: varone = 500;
2 -2 point vl = &varone;

22 van _val *point_vl;
.22.

2- Is the same as the sequence of statements: var one = 500;
-.2 vari1val = var one;

22 In both of the above cases, the variable "varl _val" is assigned the

4 value of 500. Although the use of the first set of statements seems
22 to be an unnecessary complication of a straightforward assignment.
22 keep in mind that this is just an example to demonstrate how a pointer

LO 22 is used but does not show the true power of pointer usage.
232: 20
21lFrame 320 OM

22The two unary operators used when working with pointers are the ..... and
22the ___"'

23A # and &
4.-)

23B+ & and *13

23C $ and,
23 "°

23D $ and #
2'3

23E # and -

24 Pight.
24 B: 325
25ACDE Wrong. Answer "B" is the correct response.
25 B: 325
2lFrame 325 T

22 ** Pointer Declaration ***
2 2-

2 . In order for pointers to be used in a C program, you must declare a
2 pointer variable before you can use it. The type of the pointer
22 variable must be the same as the variable that it is to point to.
22 r

C SO(2 -~ 80-.



2 In our example, the statement: point v1 &var one; must be preceded
22 by the declaration: int *point_vl; which states that the value to be-. 2 pointed to by "point vi" is of type "inti.

22 _

22 Pointers to other types of variables are declared in the same way.
"22 For example:

22 char *charpoint; declares the pointer variable "char point" which
22 is to point to a variable of type "char".
23B: 330

* 21Frame 330 OP
22The declaration: float *varpoint; declares the pointer variable
22 "varpoint" to be of type "float".
23N

24 Very good. It declares the pointer variable "varpoint" which "points"

24 to a variable of type "float".
24 B: 335
25 No. It declares the pointer variable "var point" which will "point"
25 to a variable of type "float".
25 B:3735.
21Frame 335 T r-
22 *** Pointer Facts **22

22 Pointers can be used in expressions. For example:
22

2 answer =point + 35: adds 35 to the value pointed to by "point" and
* stores the result in variable "answer".

L2 2
22 *pI = *p 2 * 5: multiplies the value pointed to by "p_2" by 5 and
22 stores the result in the variable pointed to by "p_l".

22 pone = p two; will make "p one" point to the same variable that
22 "ptwo" points to if both "p one" and "ptwo" are
22 declared to point to the same variable type.

* .(i.e. int *pone, *ptwo;)

23B: 340
21Frame 340 T
22 *** Topic Review ***

22 In this topic we have looked at pointer declaration and a few elemen-
22 tary examples of how they are used.

22 The rest of this lesson will discuss some other uses of pointers in
22 C proaramminq.

22 In the next topic area (3) 1 will describe and show examples of how
22 to pass pointers as function arpuments. In topic area four I will

. 2 discuss the use of pointers in conjunction with arrays and explain
how to do address arithmetic.

22° Hope I see you there'

C - 81

1"- -', - • "" ' -" • ""* ". .... . . . ." " ,L .. - .2 " . - " "• '" . ' - - . . . . . . . . ,' . . .. . . . , --* "-"p " ,



22 "'.

22** This concludes this topic area. $""

23END
31Frame 500 T Working with Pointers I
32 *** Introduction **
32
32 In the last topic area we saw that a "pointer" is actually a vari-
32 able that contains the address of where some other variable resides
32 in memory.
32
32 In this topic area I will describe how pointers are passed to func-
32 tions, a rationale for doing it, and a few examples.

32 Let's get started!

31Frame 505 T
32 ** Function Augument Background $-;

32 We have seen two methods of passing arguments to a function. although
•32 I have not explicitly named these methods. Now is as good a time as
32 any to do so. They are: "Call by value" and "Call by reference".
3z2 The main difference in the two is that the actual value stored in a
32-) variable can only be changed by using the "Call by reference" method

of argument passing. Let's look at a couple of examples to help make

32 this clear.

7,- 2 Let's say we have a C program that has two functions "main" and "add".
The "main" function calls the "add" function and passes it two vari-

32 ables "x" and "y". The "add" function takes the two arguments and
adds 50 to the first (x) and 75 to the second (y). The "main" func-

32 tion then prints out the two variables "x" and "y".

Let's see what these two functions miaht look like.

3Frame 510 T
-2 add(:(,y) This is a clear example of the "Call by

int x,v& value" method. Even though I called the
7 { two variables the same name in both of

x += 50; the functions, each function has its own
32 y += 7t; copy of the variables. Hence, the actual

return: values of ." and "y" in "main" are never
72 } changed by the function "add". This will

result in "10" and "30" being printed by
32 main() { the "main" function. One way around this

int x ,y: problem is to make "x" and "y" global to
0both functions. The perfered i.•ethod is to

-2 = :o use "nointers" as we will see shortly.
3n add(x,y); To introduce us to the concept used in

orintf("n%d %d",' .y); passing pointers, let's loot.. at another
} ex ample.

3B:515

C. -



31Frame 515 T
32 For this example let's say we have two functions "main" and "init".
:7-- The "main" function declares an array called "line" to be a sequence
32 of 80 characters. The "main" function calls the "init" function and

passes it the array to be initialized to blanks. C.

32 init(b line) This is a clear example of the "Call by ref-
char b line[]; erence" method. Although I called the array

32 { different names in the two functions, the
for (i=0;i<80:i++) "init" function will actually change the

32b lineli] = array "line" declared in function "main".
7n This is because the function "main" actually

32 passes the address of where the array "line"
S ~ 32 main() { begins in memory to the function "init".

• char line[80]; This "Call by reference" only works in the
32 init(line); case of arrays. Before we look at pointer
.2 }, passing, let me ask you a quick question.

3 3: 520
31Frame 520 P
32The "Call by value" method of argument passing only passes a copy of a
32variable, whereas the "Call by reference" method passes the address of
32the argument. (True or False)

34 Right. You have been paying close attention.
34 B:525
35 Wrong. I hope you aren't falling asleep on me.
3,,5 B: 525 "-

31Frame 525 T
32 ** Passing Pointers **"

We've seen in another lesson that a called function can only return
one value to the calling function. Thus, only one value of the call-

,. ino function is truely changed. This of course precludes the use of
olobal variables by the functions in question.

If it is necessary for the called function to change more than one
• _ variable of the calling function, then the perfered method is to use

addresses or pointers as passed arguments.

There are three ways in which to accomplish the task introduced above.

32 1. Pass the address of the variable.
-, 2. Pass a pointer to the variable.
32 3. Pass an array name.
338: 530
31Frame 530 T
* -2. * Passing Pointers Continued -

32 If we have a function that is to be called and its "function" is to
3": change two variables (as in our first example), we can set up the
32 function to receive pointers as its arguments as follows:

C - 87

-.. .



32 add(px~pv) In this example I have identified the variables
32 int *px,*py; "px" and "py" to be pointers to variables of
32 { 1 type "int". When the function is executed, the

32 *px += 50; values stored in the variables, pointed to by
2. *PV += 75; these pointers, will change by "50" and "75"
32 return- respectively. -.

*32 }, -
32

32 Let's look at how we would pass the "addresses" of the variables to this
32 function from our "main" function.
33,B: 535.-3
31Frame 535 T i].

3 2 $Passing Pointers Continued "

32 One way we have identified as being a way to pass a pointer to a
32 function is by passing the "address". The following illustrates
32 this method.
32
32 main() C In this example the only statement that
32 int xy; has changed from when you last saw it is
32 x = 10: the "add" function call statement. All
32 y = 30: 1 I did was to use the unary operator &
32 add(&x.&y). to identify the arguments as the address

32 printf("\nd %d",x,y); of the variables.

32 . 1*---. ..

32 Now let's look at another way to pass pointers from the calling
function to the called function.

33B: 540
31Frame 540 T
..,) Passing Pointers Continued

32z An alternate way of passing pointer information is to pass the pointer
3112 itself. The following illustrates this method.

32 main() C In this example the variables "px" and
int x,y,*px,*py; "py" are identified as pointers to vari-

. x = 10; ables of type "int". The addresses of
y =30; the variables "x" and "y" are stored in
px = &x; those pointer variables and they are used
py = &Y; as arguments in the "add" function call

32 add(pxpy); statement. Again, after execution of the
3 printf("\n%d %d",x., y); "add" function, the new values of "x" and

"y" will be printed out.

The third method of passing pointer information (pass an array name) V

32 was already discussed.
33B:545
3lFrame 545 OM
32Which of the following is "not" one of the ways in which to pass information
32that will allow the value of a variable to be changed by a called function?

33A Pass a pointer to the variable.

C 84

.e.



3.

= .-... 33B Pass an array name.
33
33C+ Pass the variable name.
33
33D Pass the address of the variable.
34 Very good.
34 B:550
35ABD No. That is one of the ways "to" do it. The correct response is "C".
35 B:550
35E "E" was not a given choice. Please try again.
35 B:545
31Frame 550 T
.3-- j Topic Review **"32 >>

32 In this topic area we have looked at the "Call by reference" and "Call :
32 by value" methods of argument passing as well as how to pass pointers
32 as function arguments.
32 '"'

32 We have seen several examples to help illustrate all of these methods.32 " '

32 In the next topic area I will describe the use of pointers in conjunc-
3:23 tion with arrays and explain how to use address arithmetic.

32 Hope to see you there'
32
32 - -'

32 *** This concludes this topic area. **
33END
41Frame 700 T Working with Pointers II Lr
42 * Introduction **"
42
42 In this topic area I will describe how pointers are used in conjunction
42 with arrays and how to use address arithmetic.
42
42 We have seen already that when you declare an array with a statement
42 like: char line[] = "This is an example"; the compiler sets up 19
42 contiguous storage locations in memory. These locations have names
42 line[O] thru line[18].
42
42 We also have seen how to refer to each individual storage location
42 using an "index" value. If "i" is a integer then lineliJ refers to
42 the "i"th element in array "line". You can manipulate "i" in order
42 to give you quick and easy access to any of the elements of the array.

*~ 42
42 Let's now see how we can use pointers to give us access and manipula- L_
42 tive power over arrays.
43B:705

41Frame 705 T
42 $** Array Access Thru Pointers *
42
42 When an array is declared (char line[lOt;) the array can be passed

C -5

77



42 between fuctions by just giving the array name. For example:
42
42 init(line); This calls the function "init" and passes the array "line".
42
42 What actually happens is the C compiler passes the address of the "O"th
42 element of the array. So in essence, a pointer to the beginning of the .

42 array is passed ("line" being the pointer).
43B:710
4lFrame 710 T
42 A Array Access Thru Pointers Continued .
42
42 The same thing can be accomplished by explicitly defining a pointer
42 in the followinq manner:
4 2
42 char *p line; This identifies "pline" as a pointer to a variable of
42 type "char".
42
42 p line = &lineEO]; This assigns the address of the "O"th element of
42 array "line" to the pointer variable "p line".
42-
42 init(pline); This calls the function "init" and passes the address
42 of the starting location of array "line".
42
42 Once the above declarations have been made, the two expressions:
42 "line" and "p line" are interchanqeable.
43B: 715
41Frame 715 OM
421f you have the declaration: char line[fO]; which of the following state-
42ments will assign the address of the "O"th element to a pointer variable
42that has been declared using the statement: char *pline; ?
43A *p line = line[O);
43 " '

43B pline = line[)]"
43
43C *p line Uine[03;
43
43D+ p line = &lineEO];
44 Right.
44 B:720
45ABC Wrong. Answer "D" is the correct response.
45 B:720
45E "E" was not a given choice. Please try again.
45 B:715
4lFrame 720 T
42 A Array Access Thru Pointers Continued -
42
42 The next logical step in our discussion is to look at how we can access H
42 the individual elements of an array usinq our declared pointer.
42
42 We already know that "line{)]" will aive LIS access to the "O"th element
42 of the array "line", but now that "p line" has the address of the "O"th
42 element of the array, we can also use the expression "*pline" to accom- __

-
_

C 86

............. o. ..................................................... . .. .... .. ..:o . • . .>.°.. .... o. . '% :'V'% - *K*°% ° ° ' " -, "°, K * . "*o. -°. ". ° ..° * - " ."°-° ' .' .. ,°' -'.' .":



X
- 42 plish the same effect. Note: It is also legal to use the notation

42 "pline[0]", but we will avoid this to cut down on the confusion.
42
42 Now that we have pointer access to the array, we can manipulate the
42 pointer to point to any of the array elements by use of address arith-
42 metic.
43B:725
41Frame 725 T
42 $*$ Address Arithmetic $
42
42 The most common use of address arithmetic is through the use of the
42 increment, decrement, addition, and subtraction operators.
42
42 The operation must involve a pointer and an integer with the exception
42 of the subtraction operator (subtraction/comparison of two pointers is
42 allowed).--
42
42 The use of "relational" operators is legal as long as the pointers
42 point to members of the same array. The use of the "operational

42 assignment" operators "+=" and "-" are also legal.
42
42 Let's look at an example of how to use some of these operators.

-' 438:730
41Frame 730 T

*': 42 Address Arithmetic Continued -
42
42 When we first started this topic area I used the declaration state-
42 ment: char line[] = "This is an eample"; to declare and initialize
42 the array "line".
42
42 Using the declarations: char *p line and p_line = &line[0]; we -:"'
42 established a pointer to the "O"th element of array "line".
42
42 We also saw that the expressions "line[()" and "*p_line" are equivalent.
42
42 Both would return a value of T if used in a statement such as:

42
" 42 char val = line()]: OR charval = *p_line;
* 438: 735

41Frame 735 T
42 * Address Arithmetic Continued "
42
42 We can move forward and backward in the array by usinq our pointer,
42 and the leqal operators mentioned before.
42
42 If we want to move one element forward in the array we can use the in-
42 crement operator (++). the addition operator (+), or the operational

42 assianment operator (+=).
42
42 For example: pline++ will make the pointer point to the next se-
42 quential element in the array. Likewise, p line = pline + I; and
42 p-line += 1; will have the same effect.

C -87

oo -"..7. ."

. .. . . . - .. • , . .. . .. .. . ..-. ._. ... . . . .. -,. .. ' ~ t-'.- - , ,,,. •,.. . .,_ .



42
S. 42 In general, it can now be said that if "p line" is a pointer and "i"

42 is an inteqer, then pline += i will increment "pline" by "i" thus
42 making "pline" point to an element "i" elements beyond its present
42 location. Decrementinq is done in a similar fashion.
43B: 740
41Frame 740 GM
42Given that "payval", "pb val", and pcval are pointers. Which of the fol-
42lowinq statements is "not" a "leqal" address arithmetic operation?
4'A+ pcval = pb val + paval;
S43
43B pcval = pb val - paval;
43

"- 43C pa val += (pb val += pcval);
43
43D pa val - (pbval - pc val); -
44 Very qood. Addition of two pointers is not allowed.
44 B:745
45BCD Wrong. That is a valid statement involving address arithmetic.
45 E:745

4- 45E "E" was not a given choice, Please try again.
45 B:740
41Frame 745 T
42 $* Lesson Four Summary .,
42
42 Well, we have come to the end of lesson four. If you have seen the
42 four subject topics in this lesson, you should now be ready to take

LO 42 the final test. If you feel that you don't understand something well
42 enough to pass the test, please retake the topic that is qiving you
42 problems.
42
42 Topic 1 gave an introduction to one and multidimensional arrays.
42
42 Topic 2 gave an introduction to pointers and their use.
42
42 Topic 3 gave a description of how pointers are passed to functions.
42
42 Topic 4 gave a description of pointer use in conjunction with arrays.
42
42 Good Luck on the test.

:* 43END"
5lFrame 900 TT TEST OVER LESSON 4
52 Welcome to the final test of lesson four. This test consists of ten
52 questions over material presented in the previous four topic areas,

... 2

52 In order to successfully complete this lesson, you must achieve a V
52 minimum score of 70% (seven out of ten questions correct).

52 If you miss a question, the correct answer will not be shown. It is
2u up to you to research the correct answer.
52"

52 Well, enough said. Let's get on with it. Good luck! "

C -- 8"-
""~'"":



578: 905 ,.-. a h
51Frame 905 OM
521. In the array declaration: char word[x, = "Sample": which of the
52followinq is the correct value for ",x" ?
53A 9 .,
53B

53B 8
53"
53C+ 7

5-D 6
54 Right. (1,110)
54 8:910
55ABD Wrong. (1, 110)
55 B:910
55E "E" was not one of your choices.
55 8:905
51Frame 910 OM

522. Given the array declaration: int array[2][4][6]; how many integer
52storage locations are allocated?
53A 12)  ..-5
53B 24
53 -' '
53C 36

53D+ 48-L 54 Right. (1, 145) L

54 B:915
55A- Wronq. (1.145)
55 B:915

55E "E" was not one of your choices.
55 8:910
51Frame 915 OF'
523. The inteqer array initialization: int array[5] = C4.8,121: is valid
-2for a one dimensional integer array having 5 elements. (True or False)

54 Richt. (1.170)

54 B: 920
55 Wrong. (1,170)

~5 58:920
51Frame 920 OM
524. Which of the following is the unary operator that is used to determine
52the memory address of a variable?
53A ,
53
5:B #

53c %
53"""

5-3D+ &

5 -

-,- ~~~~~~~~~~~~~............. . ....... . ....... .. . ...- ,,,. ....-......... -.'
* *- . -• a . .- *-- *- *.. . .• %" .. ,. - ... . . . . . . * o -, • • •. - , " - ,* . - . .- , --*, ... .- oo -. " -. , .-. •. "



53E * ('-05
54 Right. (2,305)

." 54 B:925
55ABCE Wrong. (2,305)
55 B:925
51Frame 925 OP
525. The declaraction: char *char point; declares the pointer variable
52"char point" which points to a variable of type "char". (True or False) ,
53Y
54 Right. (2,2)
54 B:930
55 Wrong. (2-325)
55 B:930
51Frame 930 OP
526. The "Call by reference" method of argument passing only passes a copy
52of a variable. whereas the "Call by value" method passes the address of
52the argument. (True or False)
53N
54 Ricqht. (3,510-515)
54 B:935
55 Wrong. (3.510-515)
55 B:935
51Frame 935 OM
527. Given: main () t
52 int x,.y,*px,*py-,
52 x y= 0;
52 px = ,

52 change(pxpy); I52. ,
52Which of the following is the method of pointer passing used?
53A+ Pass a pointer to the variable.
53B Pass an array name.
53C Pass the address of the variable.
53D Pass the variable name.
54 Right. (3,540)
54 B:940
55BCD Wrong. (3,540)
55 B:940
55E "E" was not one of your choices.
55 B:935 ..

51Frame 940 OM
528. Given the declaration: int array[lO]; which of the following state-
52ments will assign the address of the third element to a pointer variable
52that has been declared using the statement: int *p array; ?
53A *p array = &array[2];
53 '-?
53B+ parray = &array[2]1-
53 '
53C *p_array array[2]: *-.*:"

53 pry.,
53D p_array =array[2];

"° ,, 0



54 Right. (4.710)
54 B: 945
55ACD Wrong. (4,710)
55 B:945
55E "E" was not one of your choices.
55 B:940
51Frame 945 OP
529. The statement: init(p var); calls the function "init" and passes the
52address of the variable pointed to by the pointer "p var", provided the
52pointer was declared using a statement like "int *p_var;". (True of False)
53Y
54 Right. (4,710)

54 B:950
55 Wrong. (4,710)
55 B:950
51Frame 950 OM
5210. Which of the following operators is "not" a legal operator in address
52arithmetic?
53A +

53B -

53B

53D --
53 .. '

53E+"
54 Richt. (4,725)
54 8:955
55ABCD Wrong. (4,725)
55 8:955
51Frame 955 T
52 * * End of Lesson Material -CLI52 T.

52 This marks the end of lesson number four. I hope that it was of some
52 benefit to you. I am looking forward to seeing you in lesson number
52 five. I hope that you didn't have too muih trouble with the material
52 presented in this lesson. If you did, please voice your comments to
52 your training monitor who will in turn contact the CAI Plans Branch
52 at Keesler AFB,. MS.
52

52 Well, let's take a look at how you did with the test ...
573END

-I J.(2 o
o 9



OF I.1 7% T I.

File "LESSON5"

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE
# WW WW WW EE LL CC 00 00 MMM MMM EE
# WW WW WW EEEEE LL CC o0 00 MM MM MM EEEEE
# WWW WWW EE LL CC 00 00 MM MM MM EE
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

# TTTTTTTTTT 00000000
# TT 00 00
# TT on  O0
# TT cd 00
# TT 00000000

#
# LL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 55555555
# LL EEEEEEEE SSS SSS SSS SSS 00000000 NNN NN 55555555 .

# LL EE SSS SSS 00 00 NNNN NN 55
# LL EEEEE SSSS SSSS 00 00 NN NN NN 555555
# LL EEEEE SSSS SSSS 00 00 NN NN NN 5555555
# LL EE SSS SSS 00 00 NN NNNN 555
# LLLLLLLL EEEEEEEE SSS SSS SSS SSS 00000000 NN NNN 55555555
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 555555

# THE LESSON YOU ARE ABOUT TO TAKE CONTAINS INFORMATION ON STRUCTURES THAT
# ARE USED IN C PROGRAMMING.

# THE LESSON CURRENTLY CONSISTS OF FIVE TOPICS.

# The Lesson Breakdown Is As Follows:

# Topic 1: Introducing Structures - This topic introduces the idea of
# structures and two methods of declaring them.

-'"# (Approx. time =10 rain.)""

# Topic 2: Structures and Arrays - This topic describes the use of struc-
# tures within structures and arrays of structures.
# (Approx. time 5 min.)

#

# Topic 3: Structures and Pointers - This topic describes how to use point-
# ers in con.junction with structures. (Approx. time 5 min.)

I
# Lesson Breakdown Continued:

# Topic 4: Structures and Functions - This topic describes how structures
# are passed between functions. (Approx. time = 5 min.)
#

C -" 92

- - .. . . .. . .



# Topic 5: Lesson 5 Test - This is the lesson test over items that have
# been presented in the previous four lesson topics.
# (Approx. time = min.)
#

# TOTAL LESSON TIME IS APPROXIMATELY 30 MINUTES.

# I hope that you enjoy it!! ,w

SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING:

$ STATUS TOPIC # TOPIC TITLE
-- -- -- -- -- -- -- -

@ 1 Introducing Structures -

@ 2 Structures and Arrays *

@ Structures and Pointers "

@ 4 Structures and Functions .

Le5 Test Over Lesson 5

*' NOTE: A "STATUS" OF "+" INDICATES TOPIC SUCCESSFULLY COMPLETED.

" 1lFrame 100 T Introducing Structures
12 *** Introduction ***
12

- 12 A "structure" is typically a group of related variables, of possibly
12 different types, u, der a single structure name.
12 " '

12 In this topic area we will take a look at the concept of a "structure"
12 and two methods of declaring them.
12

12 We will also be discussing how to access the individual members of a
12 declared structure. We will see several examples of elementary
12 structures in order to aet you introduced to their declaration and
12 use.

12
12 Let's get started.
13B: 105
"lFrame 105 T
12 * * Structures **
S12 31

r7

C -.

• " "- " . -' '# ". _' _' '_.'''- .I ¢ ', _ _ . - '-# .' , . ' :3 _' .,-.' _< .z - ,_. _' _. '. " .2 . _ _" ._ " _7 .. '_ . , .' -'.. _',_ S ? '. '_"



12 Whenever you have a group of related items it is nice to be able to
12 group them in such a way as to give quick and easy access. In C,

12 the way this is done is through the use of "structures".
12
12 For example, if you have information about a student at a university,
12 this information miaht include items such as: Name, Address. Major,
12 GPA. and Advisor. Instead of keeping all this information stored
12 separately we can form a structure with five parts containing the
12 needed information.
12
12 Let's take a look at one way to declare our structure.
13B:110
lFrame 110 T
12 Declaring Structures $"'
12 *

12 Our first way of declaring a structure uses the keyword "struct"
12 followed by an open brace "t" followed by the declaration of the

12 item variables followed by the close brace "]" followed by the
12 structure name followed by a semicolon.
12
12 For our example this would look something like this:
12
12 strUCt C Each of the character arrays must
12 char name[NAMESIZE); have predeclared constant values
12 char address[ADDRESS -SIZE]; for their sizes, hence the use of
12 char major[MAJOR_SIZE]; capital letter names. You could
12 float gpa; have broken "name" or "address"
1.) char advisorCADISORSIZE]; into several variables or even
1 } student; other structures as we'll see later.

13B: 115
lFrame 115 T
12 $ Declarinq Structures Continued .
12

12 The "structure name" need not be a single variable name. You can give L.
" 12 several different names to the same structure type by listing the names
. 12 seperated by commas.

12
12 For example:
12
12 struct C

int wing span;

12 int numtires;
12 double tonaqe;
12 double fuelcap;
12 F_16, C_141, C_5A, KC_135;

I
1n This example shows how you can define a standard information structure

12 that can be used for several different types of aircraft.
",'. 13B: 1? ,10

I Frame 120 OP
12The use of structures allows for the grouping of related variables into

12a form which will be easy and quick to access. (True or False)

C - 94

.................................................... . .... ... ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .



13Y
14 That's right.- "'" " 14 B: 125

15 Wrong. It is easy and Quick, as you will shortly see.
15 B: 125

" liFrame 125 T
12 $ Declaring Structures Continued
12
12 Our second way of declaring a structure uses a sort of "template" for
12 the composition of the structure variables.

,'. 12

12 This way of declaring a structure uses the keyword "struct" followed by
12 a structure tag followed by an open brace "(" followed by the declara-
12 tion of the item variables followed by the close brace "" followed by
12 a semicolon. For our "student" example this would look something like:
12

12 struct stu rec { As you can see, the structure name
12 char name[NAME SIZE]; has been droped and I have added the
12 char address[ADDRESS_SIZE]; structure tag name of "sturec".
12 char major[MAJOR SIZE]; Defining structures in this way will
12 float gpa; allow you to define a variable of
12 char advisor[ADVISORSIZE]; this type within your program when-

. 12 }: ever you need it.
13B:130
lFrame 130 T
12 Declaring Structures Continued
12

9:12 The major difference between the two methods of declaring structures
12 is that the first method will allocate memory space for the structure
12 variable when the program is run through the C compiler, and the second
12 method doesn't.
12

12 The second method only defines a structure type which you can use in
12 later variable declarations. For example, if you have several students l
12 that you wish to identify within your program, you can use the follow-

- 12 inq declaration to allocate memory space for them:-" " 12

" 12 struct sturec studentli, student_2 student_3:
.' 12

12 This declares the variables "student_ 1", "student 2", and "student 3"
12 to be structures of type "stu-rec".
138: 135

,lFrame 135 T
12 Structure Variable Access *
12

12 Now that we have seen how to declare structures, it is now time tr see
12 how to access the individual members of the structure.
12
12 Access to these individual structure members is gained through the use

. 12 of the structure member operator (period).
12

..- C --.. . .



i D-RI63 42 COMPUTER MISTED INSTRUCTION FOR THE 'C' PROUIIN 3/
r LRNGUAOE ON THE ZEN.. CU) MIR FORCE INST OF TECH
I HRIGHT-PRTTERSON RFD OH SCHOOL OF ENGI.. F N DEHARCO

UNMCLSSIFIED DEC 05 RFIT/OCS/MA/95D-2 F/G 9/2 U.

Eh~hEE~hEEEE



JjLL
11111a 112.053 I

11111 11114 111.

MICROCOPY RESOLUTION TEST CHART
NA'IlN- PR PFAL! OFr SANDARS 141 A

AL.



" 12 For example: student.gpa would be how you reference the "gpa" float
12 variable within the "student" structure that I declared using the
12 first method of structure declaration. Whereas, student_1.gpa is
12 how to reference the "gpa" float variable within the "student l" struc-
12 ture (of type "stu rec") that was declared using the second method.
12
12 Let's look at another example to be sure you understand this concept.

13B: 140
llFrame 140 T
12 Structure Variable Access Continued ,
12
12 struct employees C This declaration sets up a "template" for a
12 int num male; structure of type "employees" as well as
12 int num female; declares "depl" to be a variable of that
12 int numover 40; type. This is a legal declaration that com-

12 it num under_40: bines both methods of structure declaration.
" 12 } dep_ 1: I show it here to make you aware of its use.

• ~12 ";"

12 The way in which you would reference the individual members of the .".
I 12 declared structure "dep 1" is as follows:

12 dep_ 1.num male Each of these individual variable members of
12 depl1.numfemale the structure can be used as you would any
12 dep _1.num over 40 variable of their individual type ("int").

12 dep 1.num under_40 Let's now take a quick look at how you can p
12) initialize a structure.!Z.B: 145 "--

9 liFrame 145 T
12 * Structure Initialization **"

-- 12

12 A structure may be initalized by listing the member values after the
12 structure name declaration. The following two examples show how this

- 12 is done.
12

I struct C struct planes f
12 int tot num: int tot_num;

S12 int totmairt; int totmaint.
12 int tot-avail; int totavail;
12 . planes : [5o.5,45};
12 struct planes F_16 = {50,5.45};
I7B: 150
lIlFrame 150 OM
12Given the structure declaration: struct houses {
12 int numwhite:

12 int num_green;
int num brick:
Q12 quarters = 16,139.127}:

- 12Which of the followina is a way to increase the "num brick" variable to 1.7 
. 1A houses.num brick + I 0
* 17B Quarters.houses.num brick += If .);

1"C+ quarters.num brick + 10;

. . - - ....-- P•

-."-'.. ,"-.-."-" v -"-.-."-'--. ' ".'-.". '-.'..'" "-." -. -. -"..'."- - " "-, -."v -. "-"-."."."-.": .. "v'.;-,'v'-".." ."-.,-. ... " ." v - ,-. t" ,..



13D houses.quarters.numbrick += 10;

,*-. 14 Very good.
14 B:155
15ABD No. Answer "C" is the correct one.
15 B:155
15E "E" was not a given choice. Please try again.
15 B:150
1lFrame 155 T
12 *** Topic Review ***
12

12 In this topic we have looked at the concept of a structure and we
12 examined two methods of declaring them.

12 We have seen how to access the individual members of a declared struc-

12 ture, and we also saw how you can initialize a structure when it is
1' declared. We have seen examples of what these structures look like
12- and how they can be used.
12

12 In the next topic area I will describe "structures within structures"
I- and "arrays of structures".

12.' See you there!

12

1'2' *** This concludes this topic area. '"
13END
21lFrame 300 T Structures and Arrays
22 **V introduction I**

* 2 In this topic area I will describe how structures are used within
22 structures and how to declare and use an array of structures.

S2 The uses for these two capabilities is unlimited to say the least.

* 22 The description of how to use these two capabilities is very straight-
22 forward, so this won't take long.

22 Note: Variable names in all CAPS are assumed to be declared constants.

Lets oet co it.22 Let'

2lFrame 705 T
22 ** Structures Within Structures *.,

A;22 As you may have deduced by now, there is no restriction on the types of
22 variables used within a structure. Therefore, we can have a structure
2 that contains a variable that is itself a structure.

22 For ex.ample:

22 Declare "employee" * Declare "home" t Declare "wage earner"

C -97

*. -.. '. ""_,.,
... . - llI - II . .. i%



-aJ
r.

'a2-

22 struct employee C struct home { ; struct { e en :
2 char f _name[FSIZE] char street[SSIZE]: struct employee name;
22 char m_ init: * char city[CSIZE]; * struct home address;
22 char i name[LSiZE]; * long zip: * float wage:
22 }; * }; * } wageearner;
23.B: 310 ;

2iFrame 310 T
22.- 1 Structures Within Structures Continued I

. We can now use the structure member operator (.) to gain access to a

2"2 specific member of our declared structure "wae_earner".

22 [' Given:

2 Structure "employee" * Structure "home" I Structure "wage earner"

2 structemployee f struct home { * struct {
22 carL I emoeeLSZ) *{ogzp la ae
22 char f name[FSIZE]; * char street[SSIZE]; * struct employee name;

char m init: * char city[CSIZE]; * struct home address:
22 char l-name[LSIZE]: long zip; float wage; .-.

" '- * }. * I wage earner.

2 wage earner.name.m init will access the character variable used for a

22 wage earners middle initial. 2
2IFrame :15 OM.
2 2 Structure "employee" * Structure "home" I Structure "wage earner"

22
22 struct employee t * struct home C * struct C
22 char f name[FSIZE]: * char street[SSIZE]; * struct employee name;

char m init; * char city[CSIZE]; $ struct home address;

22 char 1_name[LSIZE] * long zip; S float wage;

22 1: * ): * I wage_earner:

72Gien the above, which of the following is "not" a valid variable access

=.A w gs _e rrer. wage-..
278 waqe_earner, address.zip -
2*Cn waeevearnerhome.street

2"D waqefearrier.name. m init
24 Pi mht.
'4A R •"0
5APD Wrono. Arnswer "C" is the c:rrect response.

I.E ""was not a giver choice, please try aqain.
5_ B:-15

21Frame -2., I
22 1*1*Arravs of Structures **

22 Now that we have seen how to have structures within structures, let's

22 take a look at how to declare an array of structures.

C --- " "

. . * a . . ..•a . "

._ . .. .. . .. .. . a . . .

'o -'% % °. o - . ' ° .'e 
-

, b% .a. X . - * :• *.. . ." % ' . . j J . .- . o .-.-...- o .• • ". o' .- o ..



2 2m:- '.}

-22 First we need to declare a structure:
- " 22

22 struct address {
22 char street[S SIZE];

char city[CSIZE];
22 lonq zip;

22 We can now declare an array of this type of structure:

- -2 struct address student[10OJ'-

21Frame :25 T
22 * Arrays of Structures Continued *

22 The statement: "struct address student[100];" will allocate memory
22 space for 100 structures of type "address". Each of these structures
22 can now be accessei by using an array index and the structure member
22 operator (.).

22 For example:

22 student[49].zip will access the variable "zip" of the 50th structure
22 (of type "address") in the array "student".

22 student[9].city = "New York"; will assign the character string "New -
York" to the character array "city" of
the 10th structure (of type "address")

22 in the array "student".
_:~ -...-

21Frame .7.) UF'

22fiven the declaration: struct name {'
227 char- f_name[F_SIZE];
22 char m init"

char I name[L_size];
2 roster[50:

22A "toe'Tmc lte" structure of type "name" is declared and an array of 50 of these
22structures called "roster" is declared as well. (True or False)

24 Very cood.
*24 B: 5

2 Wrora. This is cne way we have seen to combine the two methods of struC- "Y
2E ture declaration.
2' t E: - T-,5

2lcrime 7s5 T
:2 *** topic Review **"

" 2 I, this topic we have looked at how structures are declared and used
22 within other structures and we saw how to declare and use an array
2 of structures.

C - Q

.. . . . ... .171

. . .. . . . . . . . . . . . . . . .



--. o 2 Although we didn't look at very many or very involved examples of the
~22 uses of these two capabilities. I think that it is enough to introduce

22 you to their use and will spark your ingenuity for programming appli-
In cations. The rest of this lesson will discuss some other ways of work-

22 ing with structures in C programming. .,-.

In the next topic area (3) I will describe and show examples of how
22 to use pointers to structures. In topic area four I will discuss

how to pass structure data between functions.

r i-n **I This concludes this topic area. M -

END
- 31Frame 500 T Structures and Pointers

* 2' *** Introduction **

In lesson four we saw that a "pointer" is actually a variable that con-
tains the address of where some other variable resides in memory.

:2 In this topic area I will describe how pointers are used to access
.2 structures and their members. We will take a look at a couple examples
32 to help see this fairly straightforward technique.

Let's get started'

* B: 5: 5
3iFrame 505 T
~~_,, ** Pointers to Structures ** °n
71 We have seen that given a structure declaration such as:

-' -, struct income {
float gross;
float fitw:

float s tax,
float fica:

... .} pay;

"*.. This declares a "template" structure of type "income" and also declares
:,2 a variable "pay" to be of that type.

U As we have seen, we can now access the individual members of the vari-
7 -2 able "pay" by using the "structure member operator" (.). For example:

- 52 pay.oross will access the variable "gross" within the structure "pay".
* B:51IU -.

31Frame 510 T
2 * Pointers to StructUres Continued *

72 = Let's now look at how we can use pointers to access the structure and

its members.

. Given the structure declaration: struct income

Cr
C - OC

". .. . . . . . . . .. 0 ft -*> f "f



32 .float gross;
"float fitw;
32 -:.-float s tax;

float fica;
2} pay;

32 We can use the pointer declaration: struct income *p_pay; to declare

a pointer "ppay" that points to a structure of type "income".

Using the statement: ppay &pay; we assign the starting address of
variable "pay" (of structure type "income") to variable "ppay".

33B:515
31Frame 515 OM
3Given the structure declaration: struct address C

char street[S SIZE];
char city[C_SIZE];
long zip;

- home;

32Which of the following will assign the starting address of the structure -.

.-"home" to the pointer "p _home" ?
A p-home = home;
B phome = address;
C+ p home = &home; %
D p home = &address;

74 Fight.
4 B: 52)

aAPD Wrong. Response "C" is the correct one.
jB: 52

, ,c3E "E" was not a given choice. Please try again.
5 B:515

i~aE 52 T
* Pointers to Structures Continued *

Now that we have defined a pointer to the structure "pay", we need to
72 learn how to use this pointer to access the members of the structure.

7• 2 The way in which this is done in C is through the use of the a special
"": operator which is composed of a minus and greater than sign

72 For example, if we wish to access the variable "gross" of the structure
"pay" in our example, we could use the expression: ppay->gross

3 2. This, Of course, would be used in a statement such as:
p_pa','-Igross gross pay; which would store the value of "gross pay

.,' in the memory location represented by "gross" within structure "pay".
3B: 525.- .

.IFrame 525 T
" Pointers to Structures Continued *

r -

C 11
" , C; 1 l')l , '. ,

K. -' .



LI

32 The special operator -' is provided as a shorthand way of accomplish- ,..

32 ing the same thing that the unary operator * does.

:"7 The statement we just saw, pmpay->gross = grosspay; , could have been
72 just as easily written as: (*p pay).gross gross pay; and would
32 have the same result.

32 The problem with using the unary operator * (asterisk) is that it
7i has a lower precedence than the structure member operator (period).

32 Hence, you must use parentheses to ensure proper execution. W.

-2 With this in mind it is easy to see that using the provided special
operator -> is easier and clearer.

73,3B: 5 3 0 "

3lFrame 530 0P
32Given the structure declaration: struct address f

. 2 char street[S SIZE];..

712 char city[C SIZE];
long zip;

, home:

32The variable "zip" can be accessed by using the expression: phome->&zip
'Provided "p home" has been declared a pointer to type "address".

Z2(TrUe or False)
3.-N

-34 Very good. The correct expression is: p home->zip.
74 8:535
35 No. The correct expression is: phome->zip.

B5 B:535
l-rame 535 T

32 _ Pointers to Structures Continued -

,~: A s a quick review.
32

* :- You can access
71 If you have a structure And a pointer variable the individual

declaration like: declaration like: structure members
with expressions:

struct income { struct income *p_pay; ppay-'.gross
float gross; p-pay = &pay; p-pay->fitw

float fitw; ppay->s tax
float s tax; ppay->fica

72 float fica:

pay:
]:540 .

IFrame 54@T ev ewT

2 In this topic area we have look-ed at how pointers to structures are
7'2 declared and how to access the individual members of a structure
- usino a declared pointer. -

c - "

°--



32
-32 We have seen a couple examples to help illustrate this technique.

"""' 32 r :

32 In the next topic area I will describe how to pass structure data
"2 between functions.

32 Hope to see you there!

33N This concludes this topic area. *

4lFrame 700 T Structures and Functions
4 2 Introduction .'
4 2

42 In this topic area I will describe how structure data is passed between
42 functions.
42
42 We have seen already how to pass variables as well as pointers between
42 functions. Passing structure data is done in much the same way. We

42 will look at a few ex<amples to help illustrate this concept.
42
4 2
42 Let's get started'
4B: 7 .05

41Frame 705 T
42 I Passing Structure Data ***
42 ":-

p _C 42 Using the structure we defined in the last topic area:
42
42 struct income {
42 float gross;
42 float fitw;.
42 float s tax; u-

42 float fica.

42 } pay;
42
42 One way to pass the data contained in the structure to a called func-
42 tion is to pass the structure members individually. For example:

42
42 -ompute(pay.gross,pay.fitwpay.5sta>pay.fica);
42
42 Calls function "compute" and passes the four members of structure "pay'.
4:3B: 710 >?'

4lFrame 71() T
42 Passing Structure Data Continued -

42 The called 4unction would looi: something like the following in order
42 to receive and use the passed variables:
42
42 float compute(gross,fitw, s_tax, .fica)

42 float qrossfitws_taX .fica,

C - 1 -,

-,-- -. ..-- -. . . . . . . . .... . . . ..-. . ..-. -. - ..,,. ". . '-"- . ,.-. ,. ,,v .- ..",".. ,- ,..". . "-" .. ,- .-,-.' '-.' , .. ,-.. ". " . ~ ,
Z..Z '""...-.',- _''_.' -_.-, ".''" .''.-.,',-'. "-'. . __ 1--::" -"".," -_".-%,3"-:'-".-.. . . . . .".. . .-. .-.. . . . . . . . . .'',-.Z'G' . ,'', _,.-', ',_. . _



42na

%. 42 takehomepay = gross - (fitw + s tax + fica);
42 return (tale-home_pay)

42
43B:715
4lFrame 715 T
42 $ Passing Structure Data Continued *
4 2
42 A second way to pass the structure data to the called 4L, ction is to
4" pass the entire structure. For example:

42 compute(pay); will pass the address of the beginning of structure

42 .pay" to function "compute".
42
42 The called function would look something like the following in order -.
42 to receive and use the passed structure address. L.
42

42 float compute(p _data)
4-1 struct income pdata;
42 {
42 t_h p = pdata.gross - (pdata.fitw + pdata.s tax + p data.fica);

42 return(thp).

4"-
478:72o
4lFrame 720 T
4" 2 Passing Structure Data Continued *
42

( 42 A third way to pass the structure data to the called function is to
42 pass a pointer to the structure. For example, if you have a structure
42 defined as:

4" struct income '-
42 float gross:

42 float fitw;
42 float s tax:
42 float fica;
42 pay;
42
42 Define a pointer variable with the statement: struct income *p_pay;

4 2
42 Assian the address to the pointer variable: ppay &pay;
42
42 Then call the function: compute(ppay);
4-, B:, 725,.-

4lFrame 725 T
42 * Passing Structure Data Continued "
42 -
42 The called function would look something like the following in order
42 to receive and use the passed pointer variable:

42

42 float compute(pntr)
42 struct income *pntr;

(. - 1--

. . .I . .. . .4 . . :



42 {
42 t_h_p =pntr--Igrcss (pntr->fitw + pntr-'.s tax + pntr->fica);
42 return (t_h_p) ;- _
42 } ._

43B: 70 .-
41Frame 770' UM "'.

42Which of the following is not one of the three ways of passing structure

42data to a called function?
43A Pass structure members individually.
43

43B+ Pass the structure template name.
43 •

4.C Pass the entire structure.
43
43D Pass a pointer to the structure.
44 Your right.
448:
45ACD Wrong. Answer "B" is not a valid way to pass structure data.
45 B:735
45E "E" was not a give choice. Please try again.
45 B: 730
41Frame 735 T
42 2- * Lesson Five Summary *..
42
42 Well, we have come to the end of lesson five. If you have seen the
42 four subject topics in this lesson, you should now be ready to take
42 the final test. If you feel that you don't understand somethinq well
42 enouqh to pass the test, please retake the topic that is giving you
42 problems.
42

42 Topic 1 save an introduction to structures and their use.

42 Topic 2 gave a description of structures within structures and arrays
42 of structures.
42
42 Topic . gave a description of how pointers to structures are used.
42
42 Topic 4 described how structure data is passed between functions.
4:END
51Frame 900 TT TEST OVER LESSON 5
52 Welcome to the final test of lesson five. This test consists of seven
.2 questions over material presented in the previous four topic areas.
.J

52 In order to successfully complete this lesson, you must achieve a
.. minimum score of 71.4% (five out of seven questions correct).
52
J If you miss a question, the correct answer will not be shown. It is
J- up to you to research the correct answer.

52 Well, enough said. Let's get on with it. Good luc.
538B: 05 •"

..........



* SiFrame 905 OM
* ... 521. Which of the following can be used to declare a strUCture? 1. %.4

531 struct structure -tag ( variable declarations 1;
57-I struct; C variable declarations 1, structure name;
5-C struct %' variable declarations }structure name;
53D None of the above.
'* 5E+ Both "A" and "C" above.

*54 Right. (1 110 C) 125)
54 9:910
55ABCD Wrong. (1,110 & 125)
55 8:910
5iFrame 910C OM
5--". Given the structure declaration: struct houses C
52 mnt num wood;

5 2 int num brick:-
C mnt num stucco;
52} resident;

* 2 Which of the following is a way to access the variable "num-brick" 27
A houses.num-brick-

5 : B hoDuses. resa dent. num brick:
5-+ resident.num brick.

Liresi dent. houses.nUm brick:
54 Fciqht. l * 15-140)
54 P:915

* 55bl) Wrong. (1, 1-T-140)

(.9 55E "E" was not one o+ your choices.

5lFrame 9 15 OF'
-. 52:. In the C programming language there is no provision for the Use of
* S2structures within structures because it would require to much memory

Soeha. (True or False) 2

* ~54 Pight. 2C)
- 54 BR:9 20

55 Wrong. (2,.05)
55 8 :92 C
5iFrame 92( OM
524. Given the structure declaration: struct address f
52 char street[S_SIZE];

5 char cityECSIZE);
* long zip;

* .1.... J

52Which o+ the following is a way to declare an array of 50 Such structures'
5 7 array of address struct addressES')];
5 7- Lq+ struct address array,!of _addressLtu)];

* S strulct ar-ra'_ of _addrs adrss5)
- 5:L addressl50) strLct array _of _address:,

54 Ficqht. (2,720-7'15)
54 P: 9'-"

C



J5ACD Wrong. (2, 320-325)

5iFrame 925 UP
525. biven the structUre declaration: strLICt address

5 2 char street[S SIZE];
52 char city[C_SIZE);

5 2 long zip;
* } home:

5J-4rd the pointer declaration: StrUCt address tphome;

tS-The statement: p home & horne, will assiqn the starting address of the
t-structure "home" ,of type "address") to the pointer 'p home".
t2( TrUe of Fc=lse)

54 B

Wror;. Q ' .10
ER: Q C)

5 1l Fraire Q CY0 M~
-6. ve the decla :r at ion: struIct name

char f _nameEFSIZE);
5- char m_ iiti

char 1 _name[L-size];
5:~ r os t erE I

52Which of the following ex:pressions can be Used to access the variable
LP' .2"m _ mit" Assume pointer- "p roster" has been properly declared.)?

'--A4+ p rcoster-rnt init
*P Pe ~roster-:F~m_ iit

p r:-ater- roster. m_ nrit
'j- Proster- :name-.:roster.m_init

*4 R. Qht.1
4 B :9 7
'-,-BD Wronq. (55

'E "E w r ot ore of your choi ces.

"!iFrame 9--O
'2.Which c+ th-e following is not one of the three ways of passing structure

'-~t tc- a called function?
t4 F'm S S=trL' re members individually.

t B F'3 c3he e, tmre structure.
C+ F, i t h e ztructire templ!ate ramre.

D. r-as a Pc _et er- lo the u:tructure.
t,4 F'. + .'5 7

t* "5E" waa: rot rn c t ,. r ce s



b.~.

51Frame 940 T
.5. 52 End of Lesson Material C$, 

,'

:° 52

52 This marks the end of lesson number five. I hope that it was of some
52 benefit to you. I am looking forward to seeing you in lesson number
52 six. I hope that you didn't have too much trouble with the material
52 presented in this lesson. If you did, please voice your comments to

52 your training monitor who will in turn contact the CAI Plans Branch i.
52 at Keesler AFB. MS.

52 Well, let's take a look at how you did with the test ...
53END

Ir

2 - 10 -8

I



File "LESSON6" '.

# WW WW EEEEEEEE LL CCCCCCC 000000 MMM MMM EEEEEEEE
# WW WW WW EE LL CC 00 00 MMM MMM EE
# WW NW WW EEEEE LL CC 00 00 MM MM MM EEEEE
# WWW WWW EE LL CC 00 00 MM MM MM EE
# WWW WWW EEEEEEEE LLLLLLLL CCCCCCC 000000 MM MM EEEEEEEE

TTTTTTTTTT 00000000 .
TT 00 00

# TT 00 00
# TT 00 00
# TI 00000000"

#

# LL EEEEEEEE SSE3 SSS.SS 000000 NN NN 6666
EEEEEEEE SSSSSSS SSSSSSSS 00000000 NNJ NN 6666

# LL EE 5SS SSS 00 00 NNNN NN 666
# LL EEEEE SSSS SSSS 00 00 NN NN NN 666
# LL EEEEE SSSS SSSS 00 00 NN NN NN 6666666
# LL EE SSS SSS 00 00 NN NNNN 666 66
# LLLLLLLL EEEEEEEE SSSSSSS SSSSSSS 00000000 NN NNN 666 666
# LLLLLLLL EEEEEEEE SSSSSS SSSSSS 000000 NN NN 66666

# THE LE:S .OU ;f,_ ARE ABEOUT TO TAKE CONTAINS INTRODUCTORY INFORMATION ON
# NFLIT AND OUTPUT CAPABILITIES OF THE C PROGRAMMING LANGUAGE.
#
# THE LE:.UN CUFRENTLY CONSISTS OF FIVE TOPICS.

# -ta Lesson Breakdown Is As Follows:

# Topic 1: &etchar and Putchar - This topic gives a description of the use
# of the standard I/O func:tions "getchar" and "putchar".
# (Appro. time = 5 rain.)

# Toi 2: Coetiire - This topic :ives , description of the use of the stan-
4 dard input ,nction "Qetline" and presents an e..ample "getline"
# +(nction. apro. time min.

# 7,: -: San- This top'ic Qive'es a description and e..amples o+ the stan-
4 dard input function '"scnf". (Approx. time = 15 min.)

# Le s.,nr Sre..--do-r ['ontinued:

Siopic 4: Print+ - This topic cgives a description and e:.'amples of the stan-
# dard o-utput function "printf". (4pprox:. time 10 rin.)
#

-L .- .7

-... _.. .--..... . *- - - .*-***-*'*'.* ..-. ." -' ,,- ',:,,•.' ___. __......... *""Z """ "



[%%

" # Topic 5: Lesson 6 Test - This is the lesson test over items that have
# been presented in the previous four lesson topics.
# (Approx. time = 5 min.)

- . 2

# TOTAL LESSON TIME IS AFPPOXIMATELY 40 MINUTES.

# I hope that you enjoy it'

* SELECT THE TOPIC YOU WISH TO TAKE FROM THE FOLLOWING: '

t STATUS TOpIC # TOPIC TITLE .
- ..---- - -

1 Getchar and Putchar *

GetIine

@ 3 Scanf -

4 Printf -

Test Over Lesson 6 *

NOTE: A "STATUS" OF INDICATES TOPIC SUCCESSFULLY COMPLETED. -

llFrame !00 T Getchar and Putchar
12 Introduction *

12 IlJptlt'utpUt (1/0) is 'rot" a part of the C programming language.
...2 tatements such as Print, Write, or Read are "not" available for use.

* 12
12 T7re wa', in which you comp ensate for L's lack of IO capability is to
12 make use cf library functions supplied by the C compiler's manufacturer.
I:

12 The types of functions that are provided with a specific C compiler
12 .ar,' from mar, ufacturer to manufacturer, so it is suggested that you
1 re.!iew yoLr E ccmp, ler' documentation in order to determine what
12 +urctlcn-c you can make use of.
12.
12 Ir. this topic area we will take a look at some basic IO functions
12 that most manfacturers provide.

1Fr-ame 1O . T
12 Introduction Continued '
12 -

(9o--*

-_ . * * *. . . .* . ... ...

-- . * . - * .: . . *



12 In order for you to have access to the standard I/O functions provid-
12 ed with your C compiler you may need to include a header file that
)12 contains the definitions and declarations needed by the I/O functions.

12
12 The file name that you include depends on the compiler you are using.

12 Typically the include statement will look something like the following:

12 #include <stdio.h> OR #include <bdscio.h>

12
12 Please check your compiler's documentation for the proper header file

. 12 to be included, if any.
12

12 In this lesson topic we will be discussing how to use the standard
12.: 1/0 functions "getchar" and "putchar". We will see examples of how

i 12 these two functions are called and what they do. Let's get started.

13B: 110
llFrame 110 T
12 *** Getchar **-

*12 "

12 The function "getchar" is used to read one character at a time from
1' the standard input device. The standard input device is by default

12 the users terminal keyboard.

12 Note: The standard input device can be changed on most systems, but
!2 how this is done will not be discussed in this course.".-

12 The format of the call to the function "getchar" is as follows:

c = getchar() Where "c" is any variable of type "int".
12

12 What was that? Variable "c" is of type "int"! Well, that just
12' doesn't sound right. Let's look at this a little closer.
13B: 115
1lFrame 115 T
12 b betchar Continued *
12 " °

12 The requirement that the variable that receives the character returned
12 by the function "getchar" be of type "int" stems from the fact that
12 "getchar" is a function that returns an integer value.
12

12 The only time you would run into problems in making the variable "c"
12 a "char" type is if you were trying to detect an end of file condition.
12 The reason for this is that EOF is typically equal to -1, which is of
12 course an integer.

12 Thus, when the EOF is encountered it must be read into a variable of p
12 type "int".

17B: 120
liFrame 120 T
12 * Getchar Continued "

12 F mf"m"12 For eample, the following program will "not" work.

C - 111-.



12 I
1 2 main()
12 char c;

while ((c = oetcharo) EOF)

2 some statement to deal with variable "c" >;
* 12
.- 12 "

" 12' The proper way to write the program is:

1" main() t
2 int c;

* 12 while ((c getcharo) != EOF)
* 12 ~ K some statement to deal with variable "c" >; :2

13B:125
llFrame 125 T12 * Getchar Continued *

* 12 As another example, the following program will work since no check is
I') made against "EOF".

main()
ii char c;

- while ((c = getchar() '\nl)
12) < some statement to deal with variable "c" >;
-1212- -""'

m i 12 Here the terminating condition is when "c" is equal to the "newline"
12 C escape sequence. As you can see, the requirement for the receiving H

12, variable of the function "getchar" to be of type "int" is not without
12 exception. Just be aware of the fact that "getchar" returns an "int"
12 type and this may cause you a problem if the receiving variable is not
12 of the same type.

1_B: 170
1lFrame 1-0 OP
12The "getchar" function is used to read one character at a time from standard
12input to the executing C program. (True or False)

•- I cY :-

* 14 Right. .-
14 B: 1.5
15 Wrong. Wa .e up!
15 P:15

* liFrame 135 r
.-. 12 *** Futchar ***

*12 :

12 The function "putchar" is used to write one character at a time to
12 the standard output device. The standard output device is by default
12 the users terminal screen.

S12 Note: The standard output device can be changed on most systems, but
12 how this is done will not be discussed in this course.
12

?!.-'



12 The formats of the call to the function "putchar" is as follows:

12

*PUtchar('c'); Where 'c' is any character constant.

12) putcharc,'\c'); Where \c is any C escape sequence.
- 1IB: 140

IlFrame 140 T
J1 4 Futchar Continued*

*12 For example:

12 main() t
12 putchar('I');

12 ~putchar(' )

*12 putchar('1');
121 PUtchar('17).

12 putchar (' k'
* 12 pLtchar ('e)

12 putchar(' )

12 pu~tchar('C'),
*12 putchar('. '); I

12
12 his program will write the sentence: I like C. to the standard

I-1 output device (terminal screen).
* 1, 14 t

(.9 liFrame 145 T
12- * utchar Continued*

* 12 As another example:
12 12
127 main() C
12 char string[] "I like C.";
I-1 for (i =(;strinQ~i) \O'. i++)

* 12 putchar(stringli));
- 12

12 This program will also write the sentence: I like C. to the standard
1i 2 output device (terminal screen). The loop terminating ex:pression will
J1 become "true" when the end-of-string marker (\O) is encountered.
1 ::15o
11iFr ame 15t( OlM
1 2Which of the following is 'not" a correct way to use the "putchar" functionl

1T~ putchar(c): Where c is any character variable.
1-B putchar(*c); Where *c is a pointer to any character array.

* :. ptcar'c); Where c7 is any character constant.
*1.D PUtchar(',c') Wher e \c is any C~ escape sequence.

14 Very qood.
* 14 B~:155

I 'JAC D No. Answer "b' is the correct one.
15 B8:155



15E "E" was not a given choice. Please try again.
15 B:150
liFrame 155 T
12 * Gombination Example l$

12 This example shows how you can combine both the "getchar" and "putchar"
12 functions to read & write a line of text from/to the standard 1/0, :

I2 device.

main() {
12 char c; "'

while ((c oetcharo) = \r)
12 putchar(c).

12, This program will terminate when the user hits the "Return" key at the
12 end of his/her typed line.
131 160
iiFrame 160 T
12 * * Topic Review *"v12 " '

12 In this tonic we have looked at the standard I/0 functions "getchar"
12 and "putchar".

12

12 We have seen a few examples of how to access and use these functions
12 and discussed a couple of things to be aware of in their use.

(m 12

12 In the next topic area I will describe the I/0 function "getline" and
i give a few examples of its use.

12 See YOU there'
12

*12 ]T-

12 ,*, This concludes this topic area. *,*
13END
2lFrame D.O T Getline

22 Introduction *

22 In this topic area I will describe the I/O function "aetline".

22 This function iS used to read in, one line of input from the standard
22: input device (users terminal keyboard). In addition to reading a
22 line of input, the "qetline" function also keeps track of how many
22 characters were read in.

We saw in the last topic area how to accomplish the reading of a line
22 of input using the "cetchar" function, but as you can well imagine, if

you need to do this task in several points in your program it would pay ...

22 to have a seperate function defined which you could call.

L 14
I



22 Most C compilers have this function as part of its 1/0 library, but
.22 just in case your compiler manufacturer didn't include it, I will

"" 22 present a version of "getline" that you can use in your programs.

23B: 305
2Frame 305 T

22 $$*Getline *

'-2 The format of the call to the function "getline" is as follows:

-2 n = getline(inputline, 80);
22 a a " e uh e

Where "n" is any variable of type "int", "inputline" is a character
", array, and "80" is the maximum length of the array. When the above .'

-. 2 statement is executed the "getline" function will read a line of input
-22 from the users terminal keyboard. The above call will read in at most
2 78 characters. If the user were to type 78 characters and then hit the
22 "Return" key, the actual contents of the "input line" array would be as
22 follows:

22 input line[O] thru input line[77= characters (78 characters)
22 input line[7] \n (end of line character)

inputjline[79J = \0 (end of string marker)

2lFrame :10 T
" * Getline Continued .

22 is I stated before, the "getline" function will keep track of the
22 number of characters it reads in. What I didn't mention is that

it will return this number to the calling function if so desired.

In our example statement: n getline(input line,80);

The variable "n" (of type "int") is where the number of characters
22 read in is stored. This number will include the 78 characters of

user input and the end c line character, but not the end of string
* 22 marker. For our example this would qive us a total count of 79.

22 How ,,'ou use this number, if at all, depends on your programs applica-
2-- tion.

,1Frame .315 QM

2-26iven the function call statement* n = getline(inputline,80);

: "2Which of the followinq is "not" true.
2A "n" must be a variable of type "int".
23B+ "getline" will return two values "n" and "input line".

. 2:C "input _line" must be a character array.

23D "80" is the maximum input line size.
24 Right. "getline" will return an integer value to "n", but the array
''24 "inputline" is passed as a pointer to array position input line[O].

24 : -20
- 25ACD Wrong. Answer "B" is the correct response. "getline" will return an

C -115

,', ,,,. . -, @ . , , ,.. .•' • . . * - , ." . *' - *." ,,'*.. . .. . ". . * * . , ' * .., ,, %., . ., ,-,,•- , .. ,' ,,,%-



25 integer value to "n", but the array "input line" is passed as a pointer to
S ,".. 25 array position input line[O].

-. 25 B:320
25E "E" was not a given choice, please try again.
25 B:315
2lFrame 320Y T%
" 22 * Getline Continued *

'42.

• Let's take a look at a sample program that uses the function "getline".

main()
22 char input line[80];
2 getline(input line,80)-'

22 i =0O; ."

22 while (input _lineli = '\0') {
putchar(input_line[i1);

2) i ++;

This program will read in one line of input from the users terminal
22 keboard and print the stored line (one character at a time) on the

users terminal screen.

2lFrame 72t T
S Getline Continued *

22 Now that we have seen how to use the "qetline" function that is usually

22 provided with your C compiler by the manufacturer, let's take a look at
22- how you can define your own version of the "getline" function.

22 The following will perform the same as the "getline" function we have

22 ~ust looked at and can be included in your programs if the "getline"
function is not available.

:,~ 3.,B: 3 0 . -

21Frame T
I Getline Continued *

22 getl ine (i n_n, max)
22 char inlni];
2 int max:

int i,c.
22 for (i = 0, i (max-i 1 ,& (c = getchar()) EOF && c ='\n; i++)
22 inIn[i] = c;
22 if (c == ",n')

" 22 in in[i++] = c;
22 in ln[i] = '\0';

22 return(i);

27e:.5 r-

[ -" 116

- -.........- ........ '..-.-."." " ".......".".. . " " 7n



21Frame 335 OP
22Given the function call statement: getline(inputline,35);

22The maximum number of characters that will be read by the function "getline"
22is 35. (True or False)
2 -;1 N
24 Very good. 34 characters can be read. One character is used to store the
24 end of string marker.

24 P:340
25 Wrong. 34 characters can be read. One character is used to store the
25 end of string marker.
25 P:340

21Frame 340 T
22 *$* Topic Review M

22 In this topic we have looked at the I/0 function "getline" which may
22 or may not be included with your C compiler's standard I/O library.

22 We have seen a few examples of how to access and use this function
and we saw a version of the function that you can include in your

22 program if it is not available with your compiler.

12_ In the next topic area I will describe the I/0 function "scanf" and
21 aive a few examples of its use.

22 See you there'

22 *** This concludes this topic area. ***.

-.END
: lFrame 500) T Scanf
7: *, * Introduction ***

Z2 In this topic area I will describe the I/0 function "scanf".

This function is used to read characters from the standard input
device (users terminal keyboard) and do some sort of conversion on

2 the read characters. In essence the function is used to do format-

ted input.

2 We saw in the last topic area how to accomplish the reading of a line
72 of input using the "getline" function, but if the input you wish to
•32 read is not composed of just characters you would be hard put to store
_ the input in their intended form.

7 .. -ll C compilers should have the +unction "scanf" as part of its IO
72 librar,,. Please check your compiler's documentation to be sure of
7,2_ this functions availability.
:7B: 5C).
31Frame 5c5 T
7_ 1 ** Scanf

L 11
ll",



"."

32 The format of the "scarf" function call is composed of two parts:
. a format control string and the pointer arguments.

71. A skeleton of the function call looks like this:
"7 2

32.. scanf("format control string", &arg_1, &arg 2, ,&arg n).

The format control string will be described in detail shortly. The
3 arguments the string must be pointers to the memory loca-

tions where the read in arguments are to be stored.

2 It is a fairly common mistake to try and read values into a variable
:2 by just specifyinq the variable name. This can not be done since

"scan+" is a function and as such can only return o,e value. Thus,

72 you must somehow pass it the address of where the variable is stored.

:lFrame 510 T
._.2 * canf Continued .

.J The format control string will usually contain the conversion speci-
:2 cations to be applied to the input sequences read from the input
:~ devi ce.

The format control string begins with a percent sign (M) and ends
_. with either- a conversion character or character class.

2 The following is a verbal description of what is allowed for use in
:2 the format control string:

2 " percent sign" followed by an "argument suppression character"
2 followed by an "integer field width specifier" followed by a "length
:2 modification character" followed by a "conversion character or char-
- acter class".
3:B:515
.1lFrame 515 UP
32The format of the "scanf" function call is composed of two parts:
.2a "format control string" and the "pointer arguments". (True or false)

7 4 Right. I'm glad your paying attention.

B E: 52 0
75 Wrong. That is a true statement.

7IFrame 52 T
L:2 * Scanf Continued -

:2 Let's now look at each part of the "format control string" of the
:2 scanf function call. . -

.2 The "format control string" is made LIp of individual conversion
." specifications. Each of these conversion specifications "must"
_-2 begin with a "percent sign" (M).

C 118

• °.

° o • . .o . . • • .. ... . . . . . . . .



L

S 2 The next (optional) character is an "argument suppression character".
_ 72 This character is an asterisk (M and indicates that the ne t input

32 field is to be skipped. Thus, no assignment is made into the corre-
32 sponding input argument.

2 The next (optional) part of the "string" is an "integer field width
32 specifier" which is used to specify the maximum field width ot the
32 input.

iFrame 525 T
* Scanf Continued -

32 The next (optional) part of the "string" is the "length modification
character". This character can be one of two letters: I or h

7) These two lettrs can only be used in conjunction with certain "con-
version characters" as will be described forthwith.

The last part of the "string' is the "conversion character or char-
acter class". The "conversion character" can be one of 13 different

2,4 characters.

2 -2
32 I will now give a brief description of each of these characters.
::B: 530 " " '

3iFrame 5:0 T-
-2 Scanf Continued '

d =iglv ad = decimal integer (argument should point to "int" variable type.)
-e c = octal integer (argument should point to "int" variable type.)

_.2 D = hexadecimal integer (argument should point to " t" variable type.)

. D = decimal integer (argument should point to "long" variable type.)
X = octal integer (argument should point to "long" variable type.)

. X =hexadecimal integer (argument should point to "long" variable type.)

32 e or f = floating point number (argument should point to "float" vari-
:2 able type.)

E or F = floating point number (argument should point to "double" varn-
able type.)

7iFrame 5S5 T
, Scani Lont.nUed -

c = character (argument should point to "character" variable type.)

s= strino (arOument should point to "character array' variable type.)

7: = percent sign is expected as the next input character.

_72 As a refresher: Integer input: d, o. x, D, 0, or X

C - I



-2 Floatinq point input: e, f, E, or F

Character input: c

37 2 String input: s

Percent sian input: %-
"B 540

31Frame 540 T
... Scanf Continued .

Let's look at a couple of examples involving the "scanf" function call.

scanf ("%'d%+f",&int_var, f I oat var);

72 The above call will read from standard input (users terminal keyboard)
two numbers of the tvoes "integer" and "floating point real".

*_ The users typed input numbers would be of the form: 23 45.78

The "scanf" function will read into the first aurgment ("int var")

•: _2 until a "white space" character or a character- that is incompatiable
2 with the specified "format control string" is encountered.

Note: A "white space" character is defined as a "blank", "tab" (\t)
2 or- "newline" ('n).

7171b: 545
_ IFrame 545 T

S Scanf Continued .

As another examile: scanf("%s*c'.d%%",s array,&int var)-

2 This "s:anf" call will read a "strina", "inteqer", and "percent siqn".

The users input would look somethina like this: Tax = 5%

.2 The function "scanf" will read the word "Tax" into the array "sarray",
then skip the character "=", then read the inteqer "5" and finally
read the "percent sian". No space is needed after the "5" in the L(ser .

-input since the "percent siqn" is not compatiable with the '.d" format
_ control string. The "percent sign" is not stored anywhere.

_ :550 "-.

:.lFrame 55C QM
-2(3iven the function call: scanf ("%dfsc" &w, &x , y, &z)

7 12Which of tne following variables will contain a number with a decimal point?

y

.4 Riaht.
34 B:55

C -I

- - • .



;* -7. z.

:5ACD Wronq. Response "B" is the correct answer.
•7, B : 55 ,- .

75E "E" was not one of your choices, please try again.
-5B:55()
i_Frame tt'l T

* Scanf Continued *
- n-

32 One more point on the "format control string" that I promised to
_.I talk about, namely the "length modification character".

As I mentioned, this optional character can be either the letter
1 or the letter h. The "length modification character" can only
be used with certain "conversion characters".

You may' use the letter I with the conversion characters d, o, or x
to indicate that the value being read in is to be stored in a "long" L_
rather than "int" variable type. i.e., scanf("%ld",&lint);

._.2 You maly use the letter h with the conversion characters d, o, or x
to indicate that the value being read in is to be stored in a "short"
rather than "int" variable type. i. e., scanf("%hd", &s int)

5B: 05_
_IFrame 560 T

* Scanf Continued *

As I mentioned durinq the description of the format of the "scanf"
function call, the "format control string" beqins with a percent sign
and ends with either a "conversion character" or "character class".

We have seer what the "conversion character" is. but we still need -

72_ to cover the "character class".

A "character class" is identified by a set of brackets [] following

the percent siqn. The "character class" is used in conjunction with
a character array argument.

* 2 Let's look at two examples to demonstrate the use of "character class".

P:565
1Frame 651 T

* Scanf Continued *

Example #1: scanf("%[Jabcdefghi j kl m]",valid_l etters)-

* 2 In this example an input string is read until a letter is encountered
that "is not" in the "character class" specified. The character array
"valid letters" must be big enough to hold the read in input string,

-. Example #2: scanf("%E'abcdefqhiiklm]",valid letters);

An alternate form of the "character class" uses a circumflex ('.
* 2 When this form is used, the valid input becomes any character not
:2 speciifed in the "character class". Therefore, for example #2 above,

S I -<'t



32 the input string will be read until a letter is encountered that "is"
- . 32 in the "character class" specified.

33B:570
31Frame 570 T
32 *$ Topic Review *32

32 In this topic we have looked at the I/O function "scanf" which is
32 usually included with your C compiler's standard I/O library.
32

32 We have seen a few examples of how to access and use this function
32 and discussed many of the special features of the function.
32
32

-2 In the next topic area I will describe the I/O function "printf" and
• =, give a few examples of its use.

32 See you there!

3 2

32 M This concludes this topic area. **
33END
41Frame 700 T Printf
42 *t* Introduction * *42 '

42 In this topic area I will describe the I/0 function "printf".

42 This function is used to convert and print specified arguments to
42 the standard output device (users terminal screen). In essence the
42 functior is used to do formatted output.
S42"
42 We saw in the last topic area how to accomplish formatted input by
42 using the "scanf" function. We will now cover how to accomplish the
42 task of producing output from your C program in any form you like.
42
42 All C compilers should have the function "printf" as part of its I/O
42 library. Please check your compiler's documentation to be sure of
42 this functions availability.
4'B:705
41Frame 705 T
42 * Printf **
42
42 The format of the "printf" function call is composed of two parts:
42 a format control string and the arguments.
42
42 A skeleton of the function call looks like this:
42
42 printf("format control string", argil, arg_2, ... arg_n);

*42,'',

42 The format control string will be described in detail shortly. *-,

42 The arguments following the string have two important restrictions:
42
42 1. Their "type" must agree with the corresponding conversion

C -122



42 control character within the "format control string".
42
42 2. The number of arguments must agree with the number of con-
42 version control specifications in the "format control string".
43B: 710
41Frame 710 T
42 P Frintf Continued 

W

42
42 The format control string will usually contain the conversion speci-

42 cations to be applied to the output sequences being printed to the
42 output device.
42
42 However, you may also use the "printf" function to print character
42 sequences "character for character".42 ""

42 For example: printf("C is GREAT"); will print: C is GREAT

42
42 The format control string usually begins with a percent sign (M) and
42 ends with a conversion character, but can beqin with C character es-
42 cape sequences.
42
42 For example: printf("\n\td",argl); will execute a "new line" and
42 a "tab". then print an integer.
43B:715.
41Frame 715 UP
42The "printf" function call: printf("\nI Love C"); will execute a "new line"
42and then print the character sequence: I Love C (True or false)

44 Right. Good work!
44 B:720
45 Sorry, that is a true statement.
45 8:720
41Frame 720 T J
42 Frintf Continued
42
42 The following is a verbal description of what is allowed for use in
42 the "format control string" in addition to the "escape sequences".
42
42 A "percent siqn" followed by a "minus sign" followed by an "integer
42 field width specifier" followed by a "period" followed by a "integer 1,
42 precision specifier" followed by a "length modification character"
42 followed by a "conversion character".

42"
42
42 Let's now look at each part of the "format control string" of the
42 "printf" function call.
47B: 725 7_7

41Frame 725 T
42 * Frintf Continued .
42 ,

" 42 The "format control string" is made up of individual conversion
42 specifications. Each of these conversion specifications "must"

C - 12 3



o7-

42 begin with a "percent sign" M.
. -. 4

- 42
42 The next (optional) character is a "minus sign". The minus sign, if
42 present, indicates that the corresponding argument is to be printed k_
42 left justified in its field. If no minus sign is present then the
42 argument is printed right justified." 42 "

42 The next (optional) part of the "string" is an "integer field width
42 specifier" which is used to specify the minimum field width in which
42 the converted argument is to be printed. L

473B: 730
41Frame 730 T
4 2 *Printf Continued
4 2
42 The next (optional) part of the "string" is a "period". The period
42 is used to seperate the "integer field width specifer" from the next

42 field of the "format control string".
42

42 The next (optional) part of the "string" is an "integer precision
42 specifier". This is used to specify the maximum number of digits to
42 be printed to the right of the decimal point (in the case of "double
42 and float" argument types) or the maximum number of characters (in
42 the case of a "character string" argument).
4 2

* 42 The next (optional) part of the "string" is the "length modification
42 character". This character is the letter "1". This letter can only
42 be used in conjunction with the "conversion characters": d, u, o, x
43B:7A

41Frame 735 T
" 42 * F'rintf Continued -

42

42 The last part of the "string" is the "conversion character". The
42 "conversion character" can be one of 9 different characters.
4 2

42 d = signed decimal notation
42 u = unsigned decimal notation
42 o = unsigned octal notation
42 = unsiqned hexadecimal notation

OL 42 f = float or double decimal notation (precision default = 6)
42 e = float or double scientific notation (precision default 6)

42 a = float or double using the shorter of e or f above
42

* 42 s = strino
42 c = character
4B: 740

% 41Frame 740 T
* 42 * Frintf Continued .

42
42 Let's look at a couple of examples involving the "printf" function call.
4 2
42 printf("%d %+",int_varfloatvar);

C - 124

77- *



* -.

42
,'k- 42 The above call will print to standard Output (users terminal screen)

42 two numbers of the types "integer" and "floating point real".
4f2
42 The users printed output numbers would be of the form: 23 45.78

"-' 42
"42 The "Printf" function will print the first aurgment ("int vat") and

42 then print the second argument ("float var").
42

42 Note: A "white space" or blank. character is printed between the argu-
42 ments since one space appears between the conversion specifications
42 in the "format control string".
43B:745
41Frame 745 T
42 Frintf Continued
42

42 As another example: printf("\n%6. f",float var);
S42
42 This "printf" call will execute a "new line" and then print a "float-
42 ing point real" right justified in a field of 6 print positions with
42 2 digits after the decimal point.
42

42 The users output would look something like this: 2561.89
42
42 The function "printf" will print the value in "float var" using the
42 specified format unless more print positions are needed, in which
42 case, more print positions will be used.
438:750
41Frame 750 QM
42Given the function call: printf("%4d %-4.2f %s %c",w,x.yz);
42
42Which of the following variables corresponds to the printed output: HI
471A w

43C+ y

43D
44 Right. HI is a string.
44 B:755
45ABD Wrong. HI is a string, therefore response "C" is the correct answer.
45 B:755
41Frame 755 T
42 $* Lesson Six Summary *
42
42 Well, we have come to the end of lesson six. If You have seen the
42 four sub ject topics in this lesson, you should now be ready to take
42 the final test. If you feel that you don't understand something well
42 enough to pass the test, please retake the topic that is giving you
42 problems.
42
42 Topic I gave a description of the I/O functions "getchar" and "putchar".
42

42 Topic 2 gave a description of the I/O function "getline".

C - 12b

'V_ -- V..*,;-., g ' .-- 's.- ,_ %-- I-;;-.-"ZI -- -'9 -..--- "'.b ."''''''' " , .---.- '-.-- ,'.,.,. '-v



42 Topic 3 gave a description of the I/0 function "scanf".
42
42 Topic 4 gave a description of the I/0 function "printf". A A
43END
51Frame 900 TT TEST OVER LESSON 6
52 Welcome to the final test of lesson six. This test consists of seven

52 questions over material presented in the previous four topic areas.5 2
52 In order to successfully complete this lesson, you must achieve a
52 minimum score of 71.4% (five out of seven questions correct)..

52 If you miss a question the correct answer will not be shown. It is
52 up to you to research the correct answer.

52 Well, enough said. Let's get on with it. Good luck!
53B: 905
51Frame 905 UP
521. The "getchar" function is used to read one character at a time from
52standard input to the executing C program. (True or False)
53Y r
54 Right. (1,110)

54 B:910
55 Wrong. (I. 110)
55 B:910
51Frame 910 QM
522. Which of the following is "not" a correct use the "putchar" function?
54A putchar(c); Where c is any character variable.

53B+ putchar(*c); Where *c is a pointer to any character array.
5-C putchar('c'): Where 'c' is any character constant.
5,D putchar('\c'): Where \c is any C escape sequence.
54 Riqht. (1, 135)
54 B:915
55ACD Wrong. (1, 135)

55E "E" was not one of your choices.
55 8:910
51Frame 915 UM.-
52:. Given the function call statement: n = getline(inputline,80);

52Which of the following is "not" true.
5-A "n" must be a variable of type "int".
573,+ "getline" will return two values "n" and "input..line". "
5:C "input_line" must be a character array.
5-D "80" is the maximum input line size.
54 Riqht. (2,305)
54 B:920 U
55ACD Wrong. (2, 305)
55 B:920
55E "E" was not one of your choices.55 B:9o15.-> '..

51Frame 920 OF'
54. Given the function call statement: getline(input line,35);_

C - 126

............................................................. ** ... ...



52 A

52The maximum number a+ characters that will be read by the function "getline"
34is 35. (True or False)
5ZN
54 Right. (2,310)
54 B:925
55 Wrong. (2,310)
55 B: 925
51Frame 925 QP
525. The format of the "scanf" function call is composed of two parts: I.
5-a format control string" and the "pointer arguments". (True or false)

54 Right. (3,505)
5 4 B:9'30
55 Wrong. (3.u05)

5 5 8 :9-30
51Frame 930 OM
5 2. Given the function call: scanf("%d%f%s%c",&w,.,x,y,&z)..

52Which of the following variables will contain a number with a decimal point?,

54 Ri oht. ,5i0)
54 P:935
.' ,CD Wronq. m.

'.-E "E" was not one of your choices.

S5Fr-ime UP-_ F-
t_7. The "print+" function call: printf("\nI Love C"). will execute a "new

ne" and then print the character sequence: I Love C (True or false)

54 (4,710) 
54 B: 04C)''-

55 WronQ. f4, 71t)

tlFr-irne '4,-, T
5 ** End o+ Lesson/Course Material **

52 This mar.s the end of lessor number Six and hence the end of the
52 coursze. I hope that the lesson as well as the course was of some
.-. benefit to you.

52 I hope that 'OU didn't have too Ouch trouble with the material
presented in this or- any of the lessons in this course. If you

52 did, please voice your comments to your trainino monitor who will. -

ii turn contact the CAI Plans Rranch at eesler AFB, MS.

52 Well, let's taie E look 6t how ,ou did with the test ...
'END

- C.-L-

* .. ,,*



File "EXIT"

# THE COURSE YOU ARE NOW LEAVING WAS WRITTEN BY CAPT FRANK DEMARCO
# IN PARTIAL FULFILLMENT OF HIS MASTERS DEGREE IN INFORMATION SYSTEMS.
#

#

# GGGGGG 000000 000OOO DDDDDDD BBBBBBB YY YY EEEEEEEE

# GGGGGGGG 00000000 00000000 DODDDDDD BBBBBBBB YY YY EEEEEEEE
# GG 00 00 00 00 DD DD BB BB YY YY EE
# GG 6GG 00 00 00 00 DD DO BBBBBB YYYY EEEEEEE
# G G G6 00 O0 00 00 DD DD BB BB YY EE
# GGGGGGGG 00000000 00000000 DDDDDDDD BBBBBBBB YY EEEEEEEE
# GGGGG6 000000 000000 DDDDDDD BBBBBBB YY EEEEEEEE

#. -#

# FFFFFFFF 0OO00 RRRRRRR NN NN 000000 WW WW
# FFFFFFFF 00000000 RRRRRRRR NNNN NN 00000000 WW WW WW
# FF 00 00 RR RR NN NN NN 00 00 WW WW WW '
# FFFFFFF 00 00 RRRRRRR NN NN NN 00 00 WW WW WW
# FF 00 00 RR RR NNNN NN 00 00 WW WW WW
# FF 00000000 RR RR NN NNNN 00000000 WWWWWWWW
# FF 000000 RR RR NN NN 000000 WWWWWW 00

C..

C - 1 28 "..

............. ......



VITA

Captain Frank W. DeMarco was born on 8 June 1954 in _

Wheeling, West Virginia. He graduated from St. Johns High

School in Bellaire, Ohio, in 1972 and entered the Air Force

at the age of eighteen. He was honorably discharged from

the Air Force in 1976 and joined the Ohio Air National Guard.

In 1978 he joined the Air Force Reserve Officer Training

Corps at Ohio University in Athens, Ohio. He received the

degree of Bachelor of Science in Education (Mathematics) in

June of 1980. Upon graduation, he received his commission in

the USAF. Entering active duty in July 1980 he was assigned

to the 3300 Technical Training Wing (TCHTW) at Keesler AFB,

Mississippi. His duties while at Keesler included working as

a World Wide Miltary Command and Control System (WWMCCS)

mobile training team member and as a course writer for the

Computer Assisted Instruction (CAI) Plans Branch of the 3300

TCHTW. In May of 1984 he entered the School of Engineering,

Air Force Institute of Technology, Wright-Patterson AFB,

Ohio.

Permanent address: 212 South 8th Street

Martins Ferry, Ohio

43935

V°1

V-i.,

--P . - , ,. , . . . . . . . . . . . - . - . - . ° . - . . . -. -. . . . -.. . . - - . - .. . . . ." - ' ...'. '.

,. . ..-. ,. . . . . . .._.,...............................-.-........;...................-................ ...........-................. ,..-...... . . . .;.*



i--._ 77 V-4-.-v7 I 177 -77 -. - T---

ILI

E UNCLASSIFIEDn
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
l cPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

:.'--JNCLASSIFIED

u PUITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAI LABILITY OF REPORT
__________________________________ Approved for public release;

2b- DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

S AFIT/GCS/HIA/85D-2

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If apocable)

School of Engineering APIT/ENG

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

go. NAME Or FUNDINGISPONSORING 
1
8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

eRG46NIZATIQAN s std(if applicable)

Tn'f-tmrticnn Plans Branch TTGXZ
8 c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CAI Plans Branch PROGRAM PROJECT TASK WORK UNIT

* 3300 TCHTW/TTGXZ ELEMENT NO. NO. NO. NO.

Keesler AFB, MS 39534
11. TITLE diclude Security Clasaification,

See Box 19

1: -RSONAL AUTHORISI
ink W. DeMarco, B.S., Capt, USAF

PE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. DayI 15. PAGE COUNT
MS Thesis PROM _____To____ 226

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1B. SUBJECT TERMS (Continue on reverse if nccessary and identify by block numberi

FIELD GROUP SUB. GR. Computer Applications
9 02 Teaching Plethods

Computer Aided Instruction
19. ABSTRACT Con Iinue on reverse If neCessar- and iden tify by block I number)

T iti :o COMPUTER ASSISTED INSTRUCTION FOR THE "C1' PROGRAMMING
LAJGI.ACE ON THE ZENITH Z-100 MICROCOMPUTER SYSTEM

Thesis Chairman: Dr. Ifenry B. Potoczny awnm

Professor of Mathematics -- E WOLAVER
Deanvc wiRs~rl d 1 101011ile" D,.hg,5wn

Li, rots Inmbuiot at 169"aoagy (Ae

, 2G.1flISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

4SSIFiED UNLIMITED SAME AS RPT 7-DTiC USERS FE UNCLASSIFItD

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE N4UMBER 22c OFFICE SYMBOL

Dr. llenery B. Potocznv 532539 PTEI

00 FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE



. . . . . , -- -. . ... .... -..- ,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

The field kno-un as "computer assisted instruction" or CAI as it is "J

commonly called, has gained considerable interest and support since
the advent of the microcomputer. More and more people, including L
those in supervisory positions are beginning to see the advantages,
both cost and time, in having training available in the workplace.
This study developed a training package for use on the Zenith Z-100
microcomputer. The package consists of six lessons and three programs.
The six lessons cover various topics dealing with the "C" programming
language. The objective of these lessons is to present an introduction
to the "C" programming language. The three programs are written in the
Pascal programming language and are used for the following functions:

1. Provide a means of displaying the lesson material.
2. Provide a means of checking student progress.
3. Provide a means of displaying course statistics.

171-CLASS IF IED
SECURITY CLASSIFICATION OF THIS PAGE

.- . .- . . . . . . . .. . . . . . . . *.* .-... .



- -.........

.J

- /

* ILMED
o.

' B 
. .

"" oDTIC

. .
,',. .


